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Hi!

My name is Bill Flynn and I’m from American University. This summer, I worked at the NIST Center for Neutron Research with Dr. William Ratcliff developing software pertinent to magnetic crystalline lattices.



TASK

Understand properties of 
magnetic solids

Simulate interactions with 
magnetic lattices
▪

 

Simple systems – very tedious
▪

 

Complex systems – often 

 
impossible to do by hand

Analyze experimental data
▪

 

Fitting

GOAL

SOFTWARE
Improve current features of 
software in development
Expand this software to allow 
more functionality
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So here’s the breakdown: We want to study the properties of magnetic solids. But before we break out the neutron beam and start blasting away at samples, our time would be better spent simulating the interactions with and within the solid. 

This is a complicated task; even for simple systems, like ferromagnetic chains, the calculations for various measurements are very tedious and for more complicated systems, these calculations are often impossible to do analytically. 

Additionally, once we have conducted an experiment, we would like to be able to fit our experimental results with what we think the results should look like. 

Both these tasks are perfectly suited for a computer to carry out, so our solution is to create software to do various relevant calculations for us. Last summer, development on this software began and this summer, I am continuing to expand its functionality. 



Used often in everyday life
Hard drives, credit cards, VHS
Transformers, generators
Electric Motors
Speakers, microphones
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But why do we care about these magnetic solids? Because you use magnets everyday. From the credit card you buy your lunch with to the VHS tapes you probably don’t watch anymore, many devices that have become commonplace in our daily lives and infrastructure use magnets to function. 

These shown here are just a fraction  of such devices.

However, before we get into the software, some background should be covered first



Atoms – protons, neutrons, electrons
Building blocks of matter

Crystals approximated by Lattices
Regular, repeating arrangement of atoms
Unit cell – smallest unique arrangement of atoms
Translations of unit cell can reconstruct entire 
lattice
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Atoms, for our purposes, are the building blocks of matter. As you probably learned early on, atoms are made of a nucleus (protons neutrons) and the orbiting electrons.  



While atoms are small, crystals can be huge and we approximate crystals as large repeating arrangements of atoms. For anything to be a repeating arrangement, we need a smallest unit with which to build the entire entity – we call this the unit cell. The unit cell can contain just a single atoms or maybe one hundred atoms; it just depends on the crystal in question. By translating the unit cell – just moving it left, right, up and down – you can tile the entire lattice. Here’s a small example. 



Electrons throughout lattice interact
Like charges repel
▪

 
Coulomb Repulsion

Intrinsic quantized angular momentum ‐ SPIN
▪

 
Spin vector (Sx,Sy,Sz) points in direction of spin

▪
 

Pauli Exclusion Principle

Moving electrons create magnetic field
▪

 
Magnetic fields of multiple electrons interact 
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Although atoms make up the lattice, the electrons are responsible for most of the interactions we wish to study. 

As you know, opposite charges like these happy buddies over here attract, and like charges repel. Thus, electrons from neighboring atoms in a lattice will feel a force pushing them apart. 

Also, in addition to the orbital angular momentum electrons get from flying around the nucleus, the electron has intrinsic angular momentum as well, called SPIN. A naïve concept is that this is like how the Earth rotates as it revolves around the sun, but that is wrong; spin is a completely quantum effect – the is no classical analogue. Additionally, the moving electrons have magnetic moments associated with their spin and orbital angular momentum. But this is already too much; all we need to take away from this slide is that the electron’s spin matters.



From now on, when I refer to spin, I will be talking about the electron spin.



Depending on interactions, different patterns of 
spins on the lattice can develop
Ground state is spin configuration with least energy 
Example:  

Ferromagnetic  Antiferromagnetic
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And so, getting back to lattices, depending on the different interactions within the lattice, different spin patterns can develop. We call the spin configuration with the least energy the ground state. Some examples of the ground state are the ferromagnetic arrangement (on the left) and the antiferromagnetic arrangement (on the right). These are just examples, not the only allowable ground states. But how do we tell what the energy is?



Approximate interactions by pair‐wise spin 
interactions

1st term – Interactions between two spins
2nd term – Anisotropy
Point spins preferentially along a particular direction 
in space
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That’s what Hamiltonians are for. Generally, operating on a given a state with Hamiltonian observable yields the total energy of the system that state describes. So given a spin configuration, we can find its energy using the Hamiltonian. But what Hamiltonian operator do we use? Since we are focusing on the interactions between spins, we use the Heisenberg Hamiltonian which considers the pair-wise interactions between spins. The first term with the Sj Jij Sj: Si and Sj are two spins and Jij is a matrix describing the interaction between them. For example, the identity matrix represents a ferromagnetic interaction. The second term with the D: this term is called single ion anisotropy – basically, it preferentially aligns spins along a particular direction. 



Monte Carlo Simulation
Time Independent
Minimize energy
Global minimum of Hamiltonian → ground state
Results not perfect
Implemented in C
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With the right Hamiltonian, we can now find the ground state spin configuration. 

Simulated annealing is a generic probabilistic method for finding the global minimum of a function. It’s good at finding an acceptable solution but not so good at finding the best. The name comes from the process of annealing which involves heating and cooling metals to decrease defects in the materials. 

Anywho, given a lattice, we can now minimize the Hamiltonian to find the state with the least energy – i.e., the ground state. Our simulated annealing process uses a monte carlo method. It generates random spins and measures the energy with that spin configuration.  It then perturbs the spins to see if the energy decreases and ultimately picks the state with the lowest energy. These results are pretty good, but not the best, so…



Simulated annealing puts us in the ball park 
of the global minima 
Local optimization can then focus on the correct 
region of space to obtain more accurate result

Rewrite energy as a matrix product
Use sparse matrices to save memory
Implemented in python and very fast!
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We created a local optimizer function that is called on the resulting spin configuration generated by our monte carlo simulation. It uses matrices to find the exact minimum in the region of space that the input spins point. For loops are slow in python so we use matrix operations, in particular sparse matrices to save memory, to make this a speedy calculation. 



Tom Sarvey
1,000s of lines of code!
Open source; python & C
Graphical interface

Needs:
Expansion – capability to calculate spin wave 
dispersion, cross‐section, fits, optimization, etc.
Testing – fixing bugs, establishing testing suite
Maintenance – updating code
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So given all of this, let me introduce Tom Sarvey, a 2008 SURF student, who worked with William for the past year. He started the process of making all of the aforementioned processes part of a unified program. He worked very hard, writing thousands of lines of code and has a very impressive product to show for it. But as awesome as the program was at the beginning of the summer, we believe we will have a more complete version by the end of this year. We have been working diligently on expanding, testing and maintaining the code this summer. 
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To show you how cool the program is, here is a short demo. 

The program has 4 windows, one where the lattice is displays, and 3 others to control different parameters of the lattice. First, let’s make a 3x3x3 lattice with one iron atom in the unit cell. After inputting the lattice parameters and the atom information, here it is. The program also has support for the 230 space group symmetries. Here are some examples of how you can generate more atoms without manually specifying those atoms’ parameters. Now, lets get down to some calculations. To do this, let’s choose a smaller lattice just for time’s sake. First, we will generate a bond between two atoms; we can then define what type of interaction to take place. Here is a ferromagnetic interaction. Now we hit generate and notice that all the space group symmetric bonds are generated. Now, lets save this lattice setup. Now we can run the monte carlo simulation to calculate the spins. Done. And, let’s load the spins. Notice, all pointing in the right direction. Great. 



Naïve excitation: Flip direction of one spin 
High energy cost

Reality: Spread spin reversal over many spins 
Much lower energy cost
Superposition of states with one reduced spin

Spin waves are the propagation of this 
misalignment of near‐neighbors’ spins
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The program is good at generating the ground state, but what about the excited states of the system? A naïve idea is to flip one spin to excite the system, but this is an extremely costly move. A much better idea is to spread this spin flip over the entire system. Thus the next spin is slightly deviated from the previous. This precession of spin deviations throughout a system is called a spin wave.



Calculate Hamiltonian
Calculate Eigenvalues
Eigenvalues are energies of spin wave modes

Numeric and analytic results produced 
simultaneously
Tested analytic results for simple cases
(A)Ferro: Chain; Square; Simple, Face‐Centered, 
Body‐Centered Cube
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Now with spin waves under our belts, we can calculate the dispersion relations of the spin waves. So what’s a dispersion relation? It is just an expression that describes how propagation of a wave varies with the frequency of the wave. We do this by calculating the eigenvalues of the hamiltonian, which each represent spinwave modes. Here is the dispersion of a ferromagnetic 3-chain parallel to (0,0,1). For most simple systems, the analytic results are well known so we tested the dispersion calculation results for the ferromagnetic chain, square, simple cube, body centered cube, face centered cube, and the antiferromagnetic counterparts. 
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And heres a quick demo of how simple the calculation is. Select the lattice file, the spins file and the scan direction. You can also set the resolution of the scan and just click OK. Here is the plot of those eigenvalues, and once we close that, here are the eigenvalues. 



Number of neutrons scattered per second 
into an angle Ωwith energy in [E,E+dE’]
Measurable in scattering experiment
One magnon cross section
One Magnon – quantized spin wave with energy of 
±ħω
We take Linear Approximation
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There is one more calculation the program is now capable of, which is what I spent more than a month working on – the scattering cross-section. The cross-section measures the number of scattered particles per second into a specific angle omega and with a particular energy. So basically, if you have a neutron beam incident on a sample, the cross-section just measures how many neutrons are scattered into a certain region of space. We consider the one magnon cross section. A magnon is a spin wave with energy of plus or minus hbar omega (what is omega?). This is a quantity that you actually measure in a scattering experiment. Our particular calculation considers a linear approximation which simplifies the expression, but it is still quite complicated. Here is the general formula we used, but it simplifies slightly when we consider say a simple ferromagnetic with spin quantized along the z – axis. However, we are currently still struggling with plotting and numerically calculating the cross-section. The analytical results are correct, but this section still needs more work. 



TASKS

Cross‐section 
Calculation
Optimization
Fitting – Mpfit
Testing Suite
General code updates
Pretty printing

COMPLICATIONS

SymPy has little 
support for non‐
commutative algebra

Rewrote substitution 
evaluation methods in 
core multiplication file
Sent in patch for review
▪

 

Not accepted
▪

 

Complications with newest 

 
version of SymPy

▪

 

Currently rewriting
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With two SURF students and a NIST employee working on this program, it is difficult to identify exactly who did what. 

But I can say that I created the cross-section calculation and optimization functionality, as well as fixing and testing the spin wave dispersion calculation. Also, I fixed and tested the fitting engine we are currently integrating for fitting purposes. Additionally, as the program expanded, the program’s foundation needed to grow beneath it, which I worked extensively on. 

Although each portion had its respective challenges, the cross-section and spin wave dispersion calculations had one major flaw we had to fix – both use non commutative algebra (i.e. for two symbols a and b, a*b != b*a). We use a python module still in development called SymPy for symbolic calculations, yet it’s non commutative algebra support is minimal at best. Currently, we only need the code to respect that a*b and b*a are not equal and so I rewrote the SymPy core multiplication file to make sure these two entities were not confused. I even submitted a patch to the developers but because SymPy is growing so fast, I need to rewrite this patch to be compatiable with the most current version. 

Lastly, I worked on something we call pretty printing.



LATEX GUI OUTPUT

Generates GUI text field 
containing LaTeX‐ified 
output
Uses Python 
Multiprocessing Module
Complications

MainLoop() control
Processes Not Completely 
Independent

LATEX COMPILER

Generates .tex, .pdf, .dvi 
file containing expression
Uses Python 
Subprocessing Module
Complications

Equation Breaking
Overfull Boxes
Requires LaTeX on machine
Package use
▪

 

amsmath vs. revtex4
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Pretty printing is a group of methods we use to take symbolic and/or numeric expressions from our python code and convert them to LaTeX typesetting text to allow for easier reading and inclusion in papers, presentations, etc. We do this in two ways: a pop up window that displays raw latex output and a latex compiler which writes the expressions to a pdf and instantly displays the pdf. Both have difficulties and are still being polished. 



GUI POP‐UP COMPILED LATEX DOCUMENT
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Here is a sample pop up on the left and a compiled document on the right. You can notice that the pdf has formatting problems because the expressions are so large they often do not fit on a standard page. 



Fitting data
Resolution convolution
Powder average
Domain average
Better non‐commutative algebra system
Comprehensive testing
Widespread distribution
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Although the program is growing steadily, there is still more to add. In the works currently are fitting experimental dispersion relations to our models, a comprehensive testing suite and improving sympy’s non commutative problems. We hope to include perhaps convolution with a resolution function as well as considering powders in addition to these large lattices. We hope to have a functional, distributable product in the upcoming months, and I will be working next semester with William to reach that goal. 
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And that’s it. I’d like the thank William and Tom for helping me get up to speed as well as Julie Borchers, my officemates and the NCNR staff. CHRNS, NIST AND NSF for funding. 
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