
electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

Parallel processing for Rietveld refinement

Todd R. Zeitler and Brian H. Toby

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2002). 35, 191–195 Zeitler and Toby � Parallel processing



J. Appl. Cryst. (2002). 35, 191±195 Zeitler and Toby � Parallel processing 191

research papers

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 1 October 2001

Accepted 2 January 2002

Parallel processing for Rietveld refinement

Todd R. Zeitler and Brian H. Toby*

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,

Maryland 20899-8562, USA. Correspondence e-mail: brian.toby@nist.gov

A method for speeding Rietveld re®nements using parallel computing is

presented. The method can be applied to most, if not all, Rietveld re®nement

programs. An example implementation for the Los Alamos General Structure

Analysis System (GSAS) package is described. Using a cluster with seven

processors, least-squares re®nements are completed 2.5 to 5 times faster than on

an equivalent single-processor computer.

1. Introduction

The Rietveld technique has revolutionized the analysis of

powder diffraction data and has allowed increasingly

complex crystallographic problems to be solved (Rietveld,

1969). Increasingly sophisticated instrumentation has also

expanded the scope of powder diffraction. While in the past,

crystallographic computations were performed as `batch'

runs, which might require researchers to wait for hours or

days between runs, at present most scientists perform

Rietveld analyses interactively, watching a run complete

before performing their next action. Thus, productivity is in

part determined by the speed of re®nements. For many

studies, re®nements are virtually instantaneous, but for

complex systems where many data points are used and

where many re¯ections are present, re®nements can be quite

time-consuming. The improved resolution and increased

sin �/� range of the latest synchrotron and neutron instru-

ments, along with the more common use of multiple diffrac-

tion measurements to provide information that is

unobtainable from a single measurement, will increase

computing demands for Rietveld studies.

Personal computing has drastically decreased the cost of

computing; prices continue to drop with concomitant increases

in speed. The processors in the most recently introduced

personal computers are among the fastest available. This

means that spending more money on a more expensive

computer does not necessarily provide a faster processor. One

must instead rewrite programs to utilize multiple processors

simultaneously, a concept known as parallel processing. In this

article, we show how the speed of Rietveld re®nements can be

increased dramatically through the use of parallel processing.

We demonstrate this via a parallel-processing implementation

for the General Structure Analysis System (GSAS) package

(Larson & Von Dreele, 2000). By making minor changes to the

least-squares minimization program, we were able to obtain

2.5- to 5-fold increases in speed. These factors will be main-

tained with future increases in processor speed. The methods

used here should be applicable to most, if not all, least-squares

minimization programs, and in particular to most Rietveld

implementations.

2. Parallel processing

The conventional method of parallel processing requires that a

master program generates many independent subtasks that

can then be run simultaneously on slave processors (for

example, see Pillai et al., 1988). The slave processors receive

the input needed to perform the subtask and return a result.

The results from the subtasks are then incorporated into the

overall computation by the controller program, decreasing the

computation time. If many processes are competing for

computing resources, this results in very ef®cient use of the

processors, since idle processors can be used for other tasks.

Alas, it can be very dif®cult to adapt older Fortran programs to

this paradigm without very extensive revisions, since all the

parameters needed as input and produced as output for the

subtask must be identi®ed and code must be modi®ed so that

these parameters are passed between processors.

We recently became aware of another approach to parallel

processing that appears better suited to older programs. In this

paradigm, a single version of a program is run simultaneously

on multiple processors. The computation proceeds identically

on each processor except for the most computationally

intensive sections, which are then parallelized by sharing

results between processors (Sims et al., 2000). In this way, only

small program sections must be modi®ed to achieve a

considerable amount of parallelization. This method is less

ef®cient with regard to computer utilization, since many

computations are duplicated. However, since these tasks run

concurrently, there is no impact on the elapsed time, which is

what matters from the user's perspective. The loss of proces-

sing ef®ciency as a result of duplication occurs in the least

computationally demanding sections of the program, and

further is usually of little concern, since the wasted computer

time is of little value.

3. The least-squares method

The Rietveld technique uses least-squares optimization to ®nd

the best crystallographic and experimental parameters that ®t

a computed powder diffraction pattern to observations. GSAS

allows simultaneous ®tting of single-crystal, powder and

electronic reprint



research papers

192 Zeitler and Toby � Parallel processing J. Appl. Cryst. (2002). 35, 191±195

restraint (soft-constraint) information, so in the general case

one must minimize

D � P
NS

S�1

wh�F 2
ho ÿ SF 2

hc�2 �
PNp

p�1

wp�Ipo ÿ Ipc�2

� fr
PNr

r�1

wr�dro ÿ drc�2; �1�

where D describes the total discrepancies between the

observations and corresponding values computed from a

model. The ®rst term in equation (1) ®ts to the NS single-

crystal observations, where wh are the weights for these

observations, S is a scaling factor, and Fho and Fhc are observed

and computed single-crystal structure factors, respectively.

The second term is the powder contribution, where there are

Np observations and where Ipo and Ipc are the observed and

calculated powder intensities, respectively. The weight values,

wp, are usually determined from counting statistics, such that

wp = 1/[�(Ipo)]2 = 1/Ipo. The third term de®nes the restraint

contribution, where dro is the `target' restraint value (for

example, an expected bond distance), drc is the value

computed from the model, and weights, wr, are selected by the

researcher (Larson & Von Dreele, 2000).

In linear least squares, D is minimized by solving the N

equations generated by setting the derivative of equation (1)

with respect to each parameter, vi, to zero. Crystallographic

re®nements use non-linear relationships. For non-linear least-

squares minimization, the derivatives of equation (1) are

approximated using only the ®rst-order terms in a Taylor

series expansion around a set of starting values for each

parameter. The minimization yields better values for each

parameter, vi + �vi (Stout & Jensen, 1968). In matrix notation,

vector x corresponds to the shifts to be determined from Ax =

y, where xi = �vi (Prince, 1994). The gradient vector, y, and the

Hessian matrix, A, are de®ned by

yi �
PNp

p�1

wp�Ipo ÿ Ipc�
@Ipc
@vi

� fr
PNr

r�1

wr�dro ÿ drc�
@drc
@vi

� . . . �2�

and

Aij �
PNp

p�1

wp

@Ipc
@vi

@Ipc
@vj

� fr
PNr

r�1

wr

@drc
@vi

@drc
@vj

� � � � ; �3�

where ellipses indicate the omitted single-crystal terms. Unlike

the linear case, good starting values for vi are needed and since

an approximation is employed, multiple iterations are needed

until the magnitude of the shifts becomes insigni®cant.

In a single-processor computation, the time needed for a

least-squares cycle will be approximately tS + tr + tp + tcyc,

where subscripts S, r and p refer to the computation of

contributions to yi and Aij from the single-crystal, restraints

and powder data, respectively. The subscript cyc refers to the

time needed for solving for x, applying these shifts, R-factor

computation and other computations performed in each cycle.

In our experience, computation of the contributions to yi
and Aij from powder data takes the vast majority of computing

time in a Rietveld re®nement, even when single-crystal data

and restraints are used; thus, tp� tS + tr + tcyc. Further, most of

this time is spent on computing Ipc and @Ipc/@vi (which in turn

require Fhkl for the contributing re¯ections) and evaluation of

the appropriate pro®le functions and pro®le derivatives. Since

only the sums of the contributions, yi and Aij, are needed, this

computation is ripe for parallelization.

4. Implementation

We have found that the GSAS least-squares re®nement

program, GENLES, can be accelerated many-fold by simply

parallelizing the computation of yi and Aij and duplicating

virtually all other calculations on all processors. From pro®ling

GENLES, we found that in a typical re®nement over 99% of

the processing time is spent in PDCALC, the subroutine used

for evaluating contributions to yi and Aij from powder data,

and in its children. So, while the basic sequence of the least-

squares optimization calculations that are performed in

GENLES remains intact, we have introduced some code to

coordinate the multiple processors. Further, PDCALC has

been adapted to run on subsets of the pattern. These were

virtually the only code modi®cations needed.

4.1. Task distribution

We have found it easy to distribute the tasks over m

processors by using the ®rst processor for points 1, m + 1, 2m +

1, . . . and the second processor for points 2, m + 2, 2m + 2,

. . . , and ®nally, the mth processor for points m, 2m, 3m, . . .
Since adjacent data points are distributed over all processors,

every structure factor must be evaluated on every processor.

This duplication usually has a very minor impact on ef®ciency,

as the time used for structure-factor computations is typically

very small. Thus, the powder pattern computation time, tp,

drops to approximately tp/m with parallelization and the net

speedup in the re®nement is almost m-fold.

As will be shown later, the speedup is less effective when a

very large number of re¯ections must be computed and where

the re¯ection computation becomes slow, because there are a

large number of atoms in the asymmetric unit. In this case, the

structure-factor calculations consume a large fraction of tp, so

an alternate method for distributing the computation must be

used to achieve effective parallelization. Each processor must

be given a block of points that can be processed in serial, so

that structure-factor computations are distributed rather than

duplicated. This approach is dif®cult to implement as the

blocks must be divided in such a way that each process

requires similar computational time; otherwise speedup

suffers. We have not attempted this approach yet.

No attempt has been made to parallelize the single-crystal

or restraint yi and Aij computations, since the effort would

produce minor gains at best. This means that if many

processors are being used, then tS + tr could become

comparable with tp/m. If this occurs, then the overall proces-

sing speed can still be improved by dedicating one processor

to computing only the non-powder terms and using the

remaining processors to perform the powder diffraction

electronic reprint



computation. We call this `asymmetric processing'. This will

likely be of interest where many processors are available and

the non-powder computations are extensive. In other cases, it

is faster to use a `symmetric processor distribution', where the

powder diffraction computation is run on all processors. Very

minor differences in coding are needed to select between

symmetric and asymmetric processing; thus, this can be

selected as a run-time option.

4.2. Interprocess communication

Parallel processing requires passing of data between

processors. The processor we designate the controller must

obtain the contributions to the yi and Aij values that are

computed on each slave. Each slave must obtain the total yi
and Aij values from the controller so that the slaves apply the

same least-squares shifts as the controller. The controller

could instead provide the xi values to the slaves, as well as any

intermediate values used later in the re®nement, but this is

potentially more dif®cult to implement and does not enhance

speedup. In some Rietveld implementations, R factors are

computed simultaneously with Hessian contributions; in this

case, the controller must obtain the contributions to the R-

factor terms from each slave in order to determine the overall

R factors.

In addition to passing of data, timing information must also

be passed between processors. The controller must wait for

each slave to produce the yi and Aij contributions and the

slaves must then wait for the total yi and Aij values.

4.3. GSAS-specific implementation aspects

GSAS reads all input and control parameters from a single

experiment (expnam.EXP) ®le. Since this ®le is updated as

each run progresses, to avoid potential interference, each

processor must access a separate version of this ®le. This may

be true for some of the intermediate ®les as well. Thus, it is

most convenient to provide a separate directory for each

processor. We have chosen to pass results and timing signals

between slaves and the controller using ®les. This is simple to

implement and is portable, but does require that the controller

and slaves be able to access ®les written by each other and thus

all processors must share a common ®le system.

We use a Unix shell script to initiate runs of GENLES on a

series of processors. The script also creates copies of the GSAS

input ®les needed by the slaves and provides an input ®le for

each processor that speci®es a processor number, the total

number of processors, a ¯ag for asymmetric processing, and

the directories used by each processor. The directories are

needed so that the controller can read ®les written by slaves

and the slaves can read ®les written by the controller.

Fig. 1 outlines the ¯ow of timing signals and results between

processors in our parallel version of GENLES. In the initial

stages, the same computations are duplicated on all proces-

sors. When the least-squares cycling begins, the computation

of yi and Aij is distributed among the processors. The

controller processor performs the restraint and single-crystal

computations (and in the `symmetric' case, a section of the

powder diffraction computation). Simultaneously, the slaves

begin their sections of the powder diffraction computation.

The slaves do no restraint or single-crystal computations.

When the contributions to yi and Aij are completed, the slaves

write these results, as well as R-factor intermediates, to a disk

®le. Each slave then creates a signal ®le to indicate that this

step is complete. The controller sums these contributions after

waiting for each slave's signal ®le to be created. The controller

then deletes each slave's signal ®le. When the yi and Aij sums

are complete, these values are written to a disk ®le and the

controller creates a signal ®le. Each slave waits for its signal

®le to be deleted and the controller's signal ®le to be created

before attempting to read the yi and Aij sums. This use of the

two different signal ®les prevents a slave from reading results

from a previous cycle. Once the slaves have read the yi and Aij

sums, all processors have an identical Hessian matrix. The

re®nement cycle is completed by determination of xi values

from the yi and Aij sums, application of shifts and other

subsequent computations that are duplicated on all proces-

sors.

When all requested cycles have been completed, or

GENLES terminates (for example due to convergence), one

extra step is performed by the controller processor only. The

controller reads and collates the computed pro®le points from

J. Appl. Cryst. (2002). 35, 191±195 Zeitler and Toby � Parallel processing 193

research papers

Figure 1
Steps used for parallel Rietveld re®nements using a modi®ed version of
the GSAS program, GENLES. Note that there will typically be more than
one slave processor.

electronic reprint



research papers

194 Zeitler and Toby � Parallel processing J. Appl. Cryst. (2002). 35, 191±195

the `histogram' (expnam.Pxx) ®les from each slave to produce

a complete computed pro®le as an output ®le. No attempt is

made to collate results in the re¯ection ®le, as this is used only

occasionally. If needed, GENLES can be run quickly on a

single processor with zero re®nement cycles to produce this

®le.

5. Results

Our parallel-processing version of GENLES was compared

with the original single-processor version using a Beowulf

system of eight 400 MHz Pentium II processors, each with

256 Mbyte of RAM. In all cases, re®nement results were

equivalent, within typical round-off errors. Results from three

different test cases are reported here. Test case A was

performed with an orthorhombic unit cell (space group Pba2)

and 37 atoms in the asymmetric unit. Nearly 2000 re¯ections

were calculated for approximately 3000 data points in a single

histogram and a total of 137 parameters were re®ned. Case A

was selected as an example of a typical computationally

demanding Rietveld re®nement. Case B involved a pseudo-

monoclinic unit cell with 324 atoms in the asymmetric unit

(space group C1), approximately 8000 data points in two

histograms and required the calculation of approximately

30 000 re¯ections. While re®ning only 12 parameters, this run

also processed 1400 restraints. Despite the large number of

restraints, asymmetric processing did not result in signi®cant

speedup. Case B is an example of an extremely large and

perhaps pathological problem, where parallelization would be

least effective. Case C tested the protein capabilities and

restraints of GSAS using a monoclinic structure with 16 atoms

in its asymmetric unit (space group P21), calculating 400

re¯ections and processing 14 000 data points and 64 restraints

in the re®nement of 77 parameters.

Fig. 2 shows the decrease in GENLES elapsed processing

time with an increased number of processors. Each run time

was normalized with respect to the time for a single-processor

re®nement. Lines show a ®t of the form t = b/m + (1 ÿ b),

where t is the normalized elapsed processing time and m is the

number of processors used in a re®nement, so that b is the

parallelized fraction of processing time (Diederichs, 2000).

Values of b for the three re®nements are 0.93, 0.74 and 0.86 for

cases A, B and C, respectively, showing that substantial

parallelization is obtained in all cases. Note that in case A,

GENLES runs about 5 times faster with 7 processors than on a

single processor. For comparison, the dashed line in Fig. 2

shows ideal speedup behavior (b = 1), where m processors

allow the computation to be performed m times faster than on

a single processor.

The parallel version of GENLES does not compute all

results obtained in the single-processor version. Since the

powder diffraction data are not processed in serial fashion, the

Durbin±Watson statistic is not computed. Since the re¯ection

intensities are not tabulated, the Bragg R factor (RF 2 ) is also

not computed. To obtain these values, GENLES can be run

quickly on a single processor with zero re®nement cycles.

6. Future work

Currently, a run of the parallelized version of GENLES is

initiated by running a simple Unix shell script. This script will

require minor customization speci®c to the local computing

architecture. While this has not been attempted, a similar

script could allow the parallelized version of GENLES to be

run on any set of compatible processors sharing a ®le system,

not only a Beowulf system. Since the script is the only system-

speci®c coding, we hope to implement this parallel version of

GENLES for multiprocessor Windows NT/2000 systems. We

also plan to investigate the possible advantages of MPI, a

message-passing system designed for parallel processing on

clusters, as a replacement for passing timing and data infor-

mation via ®les (Gropp et al., 1999). An MPI implementation

may allow for effective load balancing even when each

processor is given a block of adjacent points, so that ef®cient

parallelization can be obtained even for very large problems.

Our parallel version of GENLES, along with the source

code changed to implement this version, can be downloaded

from a NIST Web site (http://www.ncnr.nist.gov/xtal/software/

parallel) or from one of the CCP14 mirror sites (Cockcroft,

2001). In the future, we hope to see this program integrated

into the GSAS distribution. It may also be possible to simplify

the customization needed to prepare the submission script by

inclusion of this feature into the EXPGUI program (Toby,

2001).

7. Conclusions

A method to parallelize Rietveld re®nements has been

developed. This method is relatively straightforward and

applicable to most, if not all, Rietveld re®nement programs, as

well as other types of least-squares minimizations. While a few

intermediate results are not available with this method, the

parallelized version of GENLES is ®ve times faster than the

Figure 2
The decrease in computing time as a function of the number of processors
for three different test cases. Points show the normalized processing time
and the solid lines are ®ts to these points (see text). The dashed line shows
the idealized case of a fully parallelizable task.

electronic reprint



original single-processor version of GENLES. Even in the

worst case, a factor of nearly 2.5 improvement was seen.

Relatively minor programming changes were needed. These

changes are detailed in a companion Web page (http://

www.ncnr.nist.gov/xtal/software/parallel).

The authors wish to thank Drs James Sims and Charles E.

Bouldin for demonstrating the parallel computation approach

implemented here and for valuable discussions. We are also

indebted to Mr Bud Dickerson and Dr Przemek Klosowski for

creating the Beowulf cluster from surplus computers and Dr

Howard Hung for his help in pro®ling GENLES.

References

Cockcroft, J. K. (2001). Chairman, Collaborative Computational
Project, Number 14 (CCP14), http://www.ccp14.ac.uk/.

Diederichs, K. (2000). J. Appl. Cryst. 33, 1154±1161.
Gropp, W., Lusk, E. & Skjellum, A. (1999). Using MPI. Cambridge,

MA: MIT Press.
Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis
System (GSAS), Los Alamos National Laboratory, Report LAUR
86-748.

Pillai, K. N., Suter, B. W. & Carson, M. (1988). J. Appl. Cryst. 21, 512±
515.

Prince, E. (1994). Mathematical Techniques in Crystallography and
Materials Science. New York: Springer Verlag.

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65±71.
Sims, J. S., Hagedorn, J. G., Ketcham, P. M., Satter®eld, S. G., Grif®n,

T. J., George, W. L., Fowler, H. A., am Ende, B. A., Hung, H. K.,
Bohn, R. B., Koontz, J. E., Martys, N. W., Bouldin, C. E., Warren, J.
A., Feder, D. L., Clark, C. W., Filla, B. J. & Devaney, J. E. (2000). J.
Res. Natl Inst. Stand. Technol. 105, 875±894.

Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination; a
Practical Guide. New York: Macmillan.

Toby, B. H. (2001). J. Appl. Cryst. 34, 210±213.

J. Appl. Cryst. (2002). 35, 191±195 Zeitler and Toby � Parallel processing 195

research papers

electronic reprint


