
Peak Analysis: PAN A general-purpose curve-fitting program in DAVE

A user's guide

Rob Dimeo & Larry Kneller

October 4, 2002 (revised 07/14/05,06/08/07,09/17/09,12/01/09.and 12/10/09, 12/07/11)

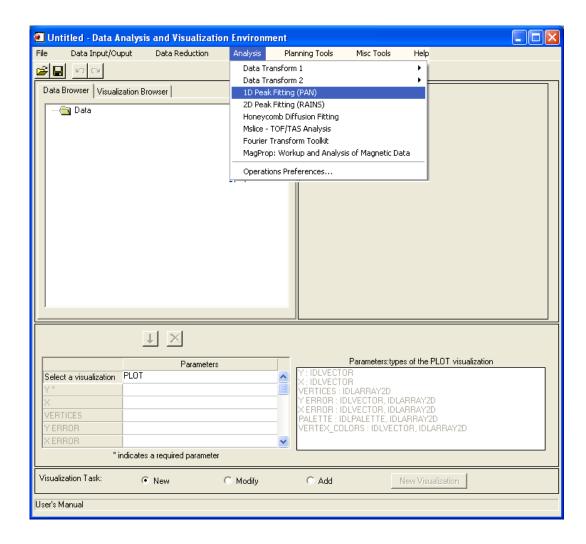
Contents

- 1.0 PAN Overview
- 2.0 PAN Controls
- 3.0 Fit functions available in PAN
- 4.0 Analyzing data with PAN: An example
- 5.0 Acknowledgments

1.0 PAN Overview

1.1 What is PAN?

PAN is a general-purpose curve-fitting utility with a graphical user interface written in IDL. It is available as a binary executable as part of the DAVE software package. To run from the source code, this means that you must have IDL running on your computer to run PAN. PAN was originally written using IDL v5.4 but it might work ok on earlier versions of IDL. You can use PAN to fit your ASCII data to any one of a library of fit functions and/or type in your own custom fit function. There is no limit to the number of functions to which you can fit your data but more functions result in more computation time.


PAN was written such that the amount of typing done by the user (in entering initial parameter guesses, for instance) is minimized. This was accomplished largely through the use of IDL's sophisticated API toolkit. One of the features of this program is that the user can select a function from the built-in library and use the mouse to specify amplitude, position and width, all with a few mouse clicks.

1.2 How do I get PAN?

PAN is available as part of the DAVE software package http://www.ncnr.nist.gov/dave/download.html

1.3 How do I launch PAN?

From DAVE, go to the Data Analysis menu and select "PAN (Peak Analysis)"

The following window will appear:

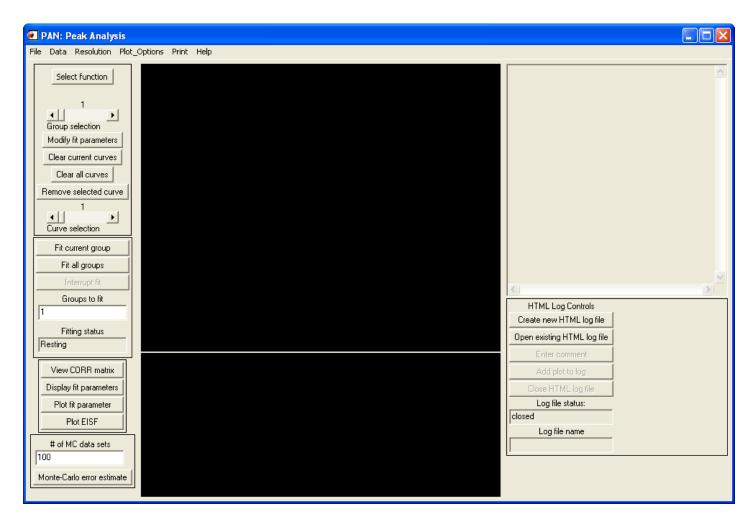


Figure 1 Main interface for PAN.

1.4 How do I get PAN to read in my data?

Your data can come in several varieties which PAN will read: (a) .dave data, (b) single group or (c) multiple groups

- a. DAVE data is saved in files with the .dave extension. It can contain single or multiple group data with several other pieces of information, including perhaps a pan_mask defining which data are used for fitting and display (see below.)
 - b. 3-column tab- or space- delimited: x,z,zerr where x is the independent variable, z is the dependent variable, and zerr is the measurement error in the dependent variable.

Example: Simple data set consisting of x, z and zerr

0.000 1.000 1.000

```
2.000 4.000 2.000
6.000 9.000 3.000
```

c. Grouped ASCII data: x,y,z,zerr where x and y are the independent variables, z is the dependent variable, and zerr is the measurement error in the dependent variable.

All lines that begin with a hash # are comment lines and are ignored by PAN. PAN expects the first number to appear without a hash mark to be the number of x values and the second without a hash to be the number of y values. The y values follow next and then two columns of z and z are grouped by their y value.

<u>Example</u>: In this example we have 5 xvalues and 3 yvalues resulting in 15 total data (z) points. The value of z at x=-2.0 and y=1.0 is 200. The corresponding error, zerr, is 14.1.

```
# Number of x-values
5
# Number of y-values
# xvalues:
-2.0000000
-1.0000000
0.00000000
1.0000000
2.0000000
# yvalues:
0.250000
1.00000
1.75000
# Group: 0
229.00000 15.132746
451.00000 21.236761
4380.0000 66.181568
455.00000 21.330729
209.00000 14.456832
# Group: 1
200.00000 14.142136
426.00000 20.639767
3260.0000 57.096410
393.00000 19.824228
219.00000 14.798649
# Group: 2
203.00000 14.247807
320.00000 17.888544
2103.0000 45.858478
333.00000 18.248288
232.00000 15.231546
```

If you were to read this data file into PAN, you would see z plotted as a function of x and use the GROUP SELECTION slider bar to change the value of y.

2.0 PAN Controls

Figure 1 shows the main interface for PAN. In this section we describe the controls and various menu options.

There are five menus, FILE, DATA, RESOLUTION, PRINT and HELP, located at the top of the main interface. There is a SELECT FUNCTION menu located along the left side of the interface for choosing individual functions to use in data fitting.

2.1 FILE menu

The file menu is shown in figure 2 below and the options are described below the figure.

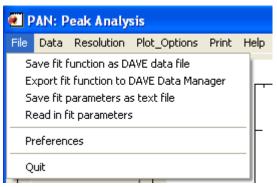


Figure 2 File menu options.

Save fit parameters as text

Display current file information displays filename of current data file

Preferences

Launches dialog shown in figure 3. Details described below. Note that this is a persistent dialog and will close only after the user presses the Dismiss button. If you

change one of the fields and press Accept, the dialog will remain but PAN's preferences will be updated.

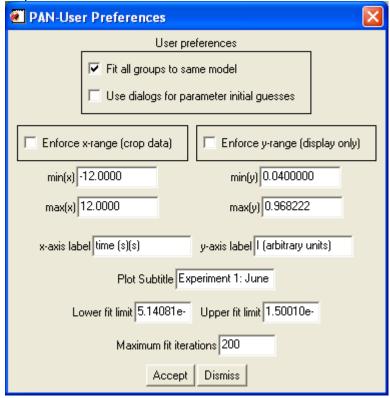


Figure 3 Preferences dialog.

Fit all groups to same model

After you specify the curve components for a single data group, if you select FIT ALL GROUPS, each group will be fit with a model identical to the first one. Otherwise each group can have a different model.

Update display at each fit iteration

When this box is checked the display will be updated with each intermediate step as the fit algorithm converges to a solution. This slows down the fitting process so the default is that the box is not checked.

Use dialogs for parameter initial guesses

When this box is checked the user enters the initial guesses in a dialog box rather than using the mouse to specify location, widths, etc.

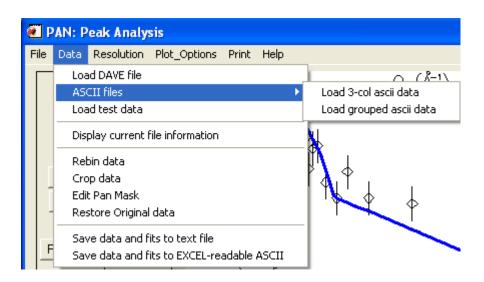
Enforce x-range/Enforce y-range/min(x)/max(x)/min(y)/max(y)

When checked, <code>Enforce x-range</code> and <code>Enforce y-range</code> cause the PAN display to show only the limits listed in $\min(x)$, $\max(x)$, $\min(y)$, $\max(y)$. These text fields are editable and allow the user to change the viewing range. Note also that, when the <code>Enforce</code> boxes are unchecked, the user can change the viewing range by pressing the left mouse button and dragging a rubberband box around the desired view region. A

right mouse button press results in autoscaling the range.

x-axis label, y-axis label

These text fields allow the user to specify the plot axes in the main PAN display.


Lower fit limit, Upper fit limit

These text fields allow the user to change the range over which to fit the data. The fit region is delineated by vertical dashed lines.

Maximum fit iterations

From time to time the fit algorithm may get stuck and not converge to a solution. In this case, PAN will stop fitting when it has reached the maximum number of fit iterations. The default is 200 but the user can change this value.

2.2 DATA menu

Load DAVE file

.dave binary format

Load 3-col ascii data

format described in section 1.4

Load grouped ascii data

format described in section 1.4

Load test data

used in the tutorial in section 4

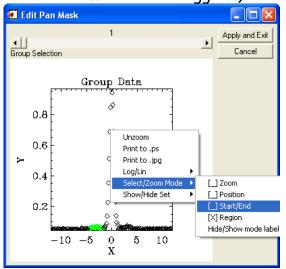
Display current file information

display some information about the currently loaded file

Rebin data

rebin data to a new x values

Crop data


select cropping (one crop for all groups)

(in situations where the cropping function is inadequate because each group needs a different set of points removed from the fit or interior points must be removed, consider using "Edit Pan Mask", shown next)

Edit Pan Mask

edit the mask used to hide data points (each group has its own mask, points can be masked anywhere in the set)

(Select each range of data points in the plot to toggle their mask states (mask/unmask them). The "mode" of usage of the plot in this widget can be changed by holding the right mouse button, navigating to the Zoom, Position, Start/End, or Region selection option. Zoom simply allows you to zoom into the data, while the other options allow you to select which items will have their mask values toggled.)

Notes on pan_mask:

The Pan_mask is an optional item possibly available in a DAVE file. DAVE data is stored in a 2-d "QTY" array of size npoints x ngroups. All groups have the same associated x values. Because of this limitation it is sometimes necessary to specify that certain points in the QTY array should not be used by masking them. This is where the pan_mask comes in.

If the pan_mask is available in the DAVE file it is stored in the pan_mask pointer of the DAVE pointer's specificptr as an array of bytes (typically created using

bits2bytes.pro). The name "pan_mask" is chosen to avoid potential conflict with other masks the user may have created in a DAVE file.

If available, bytes2bits.pro is used to convert the pan_mask from a coded 1d byte array into a 2d array of 1's and 0's of the same dimensions as the associated QTY array:

bitmask = bytes2bits(pan_mask,npoints,ngroups)

The converted array represents the mask state of each pixel of the 2-d QTY data array (1 for not masked, 0 for masked.) If the pan_mask is not present in the DAVE file or if the data are read in from an ASCII file, PAN will create a pan_mask automatically with all values set to 1 (unmasked). Masked data points will be omitted from the fitting process and will not be displayed.

Restore original data restore data to its original state

2.3 RESOLUTION menu

Load DAVE data as resolution function Load a DAVE file to use as the resolution function.

Load 3-col ascii resolution function Load a 3-col ASCII file to use as the resolution function.

Load grouped ascii resolution function Load a grouped ASCII file to use as the resolution function.

Change resolution domain (crop)

Crop the resolution data to improve speed.

Rebin Resolution data

Rebin the resolution data to improve speed.

Restore Resolution data

Restore the resolution data to its original state.

Clear resolution function

Clear the resolution function and proceed without it.

2.4 Plot_Options menu

The Plot_Options menu is shown in figure 4 below and the options are described below the figure.

This menu provides the options to plot the x and y axes on log or linear scales.

2.5 PRINT menu

The Print menu is shown in figure 5 below and the options are described below the figure.

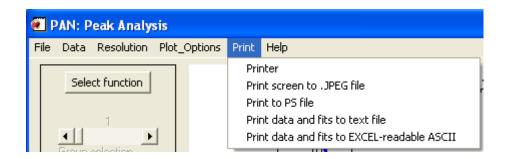
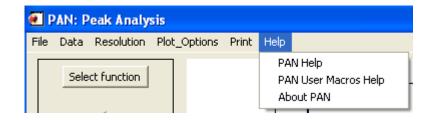


Figure 5 Print menu options.


Print to PS file

This selection will print the contents of the main display window, the residuals window if a fit is present, the fit parameters with uncertainties and χ^2 (if fit is present).

Print data and fits to text file

This selection prints data from all groups into three columns (x,z,zerr) for each group if no fits are present. If fits are present the number of columns increases to $3+1+n_{\rm curves}$. The first three columns are x,z,zerr. The fourth column is the overall fit. The remaining $n_{\rm curves}$ columns contain the fit components evaluated at x.

2.6 HELP menu

PAN Help

Launch a PDF reader to display this help file.

PAN User Macros Help

Launch a PDF reader to help file on user macros.

About PAN

Launch a brief description dialog.

2.6 Select function dropdown menu and controls

This menu, shown in figure 5, allows the user to select which curve to add to the overall fit function. After selecting one of these functions, the user is given instructions in the text display (to the right of the main plotting window) on how to specify the initial parameter values for the function using the mouse (if the preference has been set to always use a dialog then a dialog will appear).

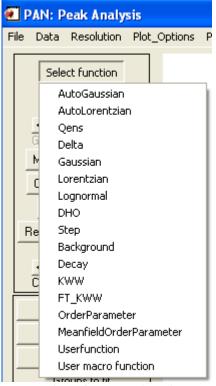


Figure 5 Select function dropdown menu.

If the user selects userfunction then curve entry dialog appears (figure 6) allowing the user to enter his/her custom fitting function. Note that this custom fit function must be written in IDL syntax (see notes below) with the independent variable specified as x in the expression, and the parameters specified by elements of an array, p. The example shown in figure 6 is that of a quadratic equation with fit parameters p[0], p[1], and p[2].

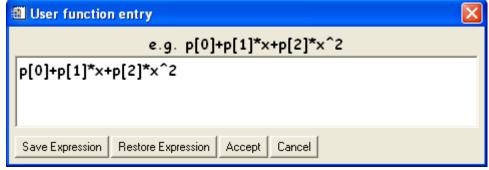


Figure 6 User function curve entry dialog.

After pressing Accept the dialog shown in figure 7 appears allowing the user to enter the initial parameter values.

PAN Parameter Information						
USERFUNCTION -						
USERFUNCTION						
Values	Fixed	Set Low	Lower Limit	Set High	Upper Limit	Tie
p[0] 1.0000000	□ p[0]	□ p[0]	p[0] 0.000000	□ p[0]	p[0] 0.000000	□ p[0]
p[1] 1.0000000	□ p[1]	□ p[1]	p[1] 0.000000	p[1]	p[1] 0.000000	□ p[1]
p[2] 1.0000000	□ p[2]	□ p[2]	p[2] 0.000000	p[2]	p[2] 0.000000	□ p[2]
p[0]+p[1]*x+p[2]*x^2						
Apply and Dismiss						

Figure 7 Parameter entry for user function dialog.

If the user selects usermacro then curve entry dialog appears (figure 8) allowing the user to enter his/her custom fitting function. Note that this custom fit function must be written in IDL syntax with the independent variable specified as x in the expression, and the parameters specified by elements of an array, p. The example shown in figure 6 is that of a quadratic equation with fit parameters p[0], p[1], and p[2].

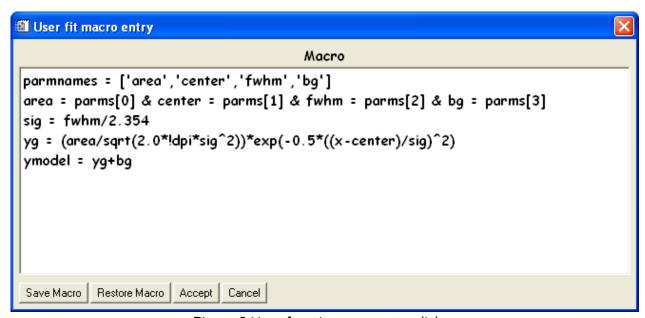


Figure 8 User function curve entry dialog.

After pressing Accept the dialog shown in figure 9 appears allowing the user to enter the initial parameter values.

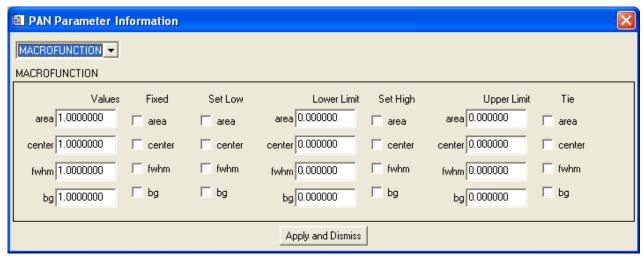


Figure 9 Parameter entry for user function dialog.

Notes/Warnings on <u>integer usage</u> and <u>IDL</u> Reserved words in macro and function definitions:

- 1) When defining a "User Function" or "User Macro", take care not to use <u>integer</u> <u>arithmetic</u> unless you intend to do so. For example, use 0.5 instead of $\frac{1}{2}$ and 0.25 instead of $\frac{1}{4}$. The ratios $\frac{1}{2}$ and $\frac{1}{4}$ will be evaluated by IDL using integer arithmetic and yield zero (0) as the result in each case. This may effectively eliminate part of your function or macro definition.
- 2) Also, when defining a "User Function" or "User Macro", you may not use IDL reserved words as variable names. This will produce a syntax error message, and it may be very confusing to track down the issue. The IDL reserved words are shown here in uppercase, but IDL is not case sensitive:

AND, BEGIN, BREAK, CASE, COMMON, COMPILE_OPT, CONTINUE, DO, ELSE, END, ENDCASE, ENDELSE, ENDFOR, ENDIF, ENDREP, ENDSWITCH, ENDWHILE, EQ, FOR, FORWARD_FUNCTION, FUNCTION, GE, GOTO, GT, IF, INHERITS, LE, LT, MOD, NE, NOT, OF, ON_IOERROR, OR, PRO, REPEAT, SWITCH, THEN, UNTIL, WHILE, XOR.

(While most of these words are unlikely to appear as variables, here are some possible examples of this type of bug:

<u>If = Io*exp(-x/Do)</u>, <u>Do</u> for D_zero, <u>Lt</u> for Lorentzian, <u>Of</u> for Ofinal, <u>repeat</u> for a repeat spacing, etc.)

The remaining controls in the left hand control panel of the main PAN interface are listed below.

Group selection

This slider control allows user to view the different groups, i.e. change the y-value to y_a , say, to look at $z=z(x,y=y_a)$.

Clear all curves

If curves (or a fit) are present then this will remove all of the fits from all of the groups.

Modify fit parameters

Pressing this button launches a parameter modification dialog as shown in figure 10.

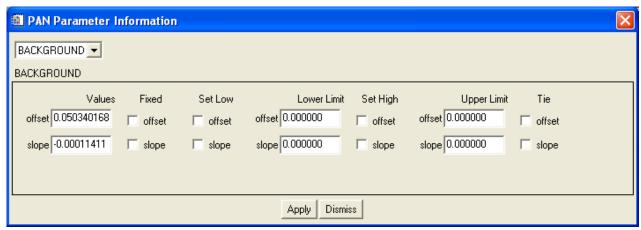


Figure 10 Parameter modification dialog.

This dialog lists all of the curves in the currently selected group (as specified by the Group selection slider control. The example in figure 10 shows that one of the curves in the current fit is the sloping background. The current values are shown as well as a number of check boxes (all unchecked). Any of these values can be fixed at some value by checking the box marked <code>Fixed</code>. Furthermore you can impose upper and lower limits on any of the parameters by checking the appropriate <code>Set Low</code> or <code>Set High</code> boxes and typing in the appropriate limits in the text field labeled <code>Lower Limit</code> or <code>Upper Limit</code>. In addition, any of the parameters can be tied together by checking the <code>Tie</code> box on the appropriate parameters.

When there is more than one curve in the fit you can access the other curves via the dropdown menu in the upper left corner of this dialog as shown in figure 11.

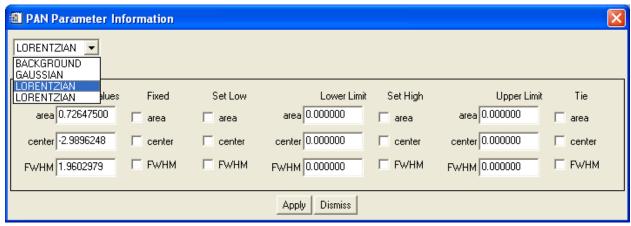


Figure 11 Parameter modification dialog showing multiple curve entries.

Clear current curves

If curves (or a fit) are present then this will remove the fit from the currently selected group.

Remove selected curve

Set the slider labeled Curve selection to the curve number you wish to remove from the currently selected group and press this button to perform this action.

Curve selection

Set the slider to the desired curve as listed in the right hand text panel of the main display (see figure 12).

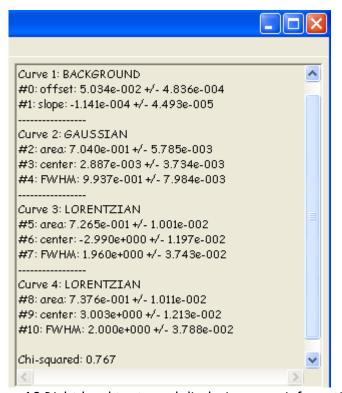


Figure 12 Right hand text panel displaying curve information.

Fit current group

Pressing this button results in the current group displayed to be fit to the model selected by the user.

Fit all groups

Pressing this button causes all of the groups listed in the text box labeled Groups to fit to be fit to the same model if this is the preference set in the Preferences dialog by the user.

Interrupt fit

If the fit "gets stuck" in a local minimum, then you can press this button to stop the fit. Pressing it again resumes the fit. Note however that if it gets stuck and you don't press this then the fit routine will continue trying to fit it until the maximum number of fit iterations are reached (as specified in the Preferences dialog).

Groups to fit

This text box specifies which groups will be fit if the user presses the Fit all groups button.

Fitting status

If fitting this reads "fitting" else it reads "resting". This is useful when deciding if the fit routine is "stuck".

Display fit parameters

Displays the current fit parameters in the text box on the right hand side of the main interface (see figure 12).

Plot fit parameter

If you have fit multiple groups with the same model then you can plot the group dependence of one of the parameters (see figure 13).

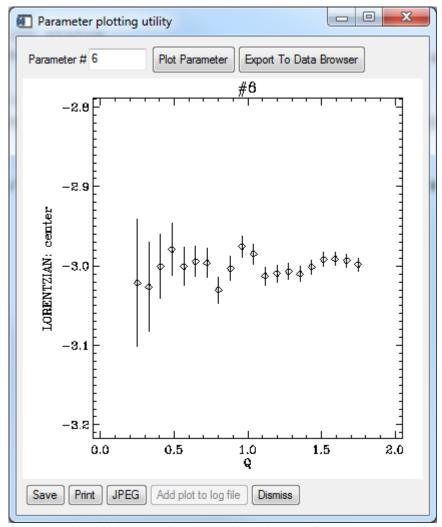


Figure 13 Example of plotting the group dependence of parameter #6 of the fit.

Plot EISF

This is a function that neutron scatterers use called the Elastic Incoherent Structure Factor. It has a similar look as the Plot fit parameter interface does and the user specified those parameters that correspond to the elastic integrated intensity and the quasielastic integrated intensity.

3.0 Fit functions available in PAN

The functions available in PAN are:

Gaussian
Lorentzian
Lognormal
Damped harmonic oscillator
Background
Smooth step function

Decay
KWW
FT(KWW)
OrderParameter
MeanfieldOrderParameter
User function
User macro function

HOT KEYS: Note: Many of these functions can be accessed by using "Hot_Keys" when the mouse is in the plot window: g, l, b, d, represent Gaussian, Lorentzian, Background, and Delta, respectively. Lowercase f fits the current group, and uppercase 'F' is equivalent to "fit all groups".

Description of PAN Fit Functions

Gaussian

A: integrated area

 x_{a} : mean of distribution

W: full-width at half-maximum

Lorentzian

A: integrated area

 x_{o} : mean of distribution

W: full-width at half-maximum

Lognormal

Distribution function for a random variable whose natural log is normally distributed. Note that this distribution uses absolute values so that it is symmetric about E = 0.

$$f(x; A, x_0, \sigma) = \frac{A}{2|x|\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{\ln(|x|-|x_0|)}{\sigma}\right)^2}$$

A: integrated area

 x_i : mean of underlying gaussian distribution

o: standard deviation of the underlying gaussian distribution

You can use these parameters to get the mode, \mathbf{x}_{mode} , and standard deviation, SD, of the lognormal distribution via:

$$x_{\text{mod }e} = \exp\left(x_0 + \frac{\sigma^2}{2}\right)$$

$$SD = \sqrt{\exp(2x_0 + \sigma^2)(\exp(\sigma^2) - 1)}$$

The parameters $\mathbf{x}_{_{0}}$ and σ are actually displayed whenever you choose to display the fit parameters.

Damped Harmonic Oscillator

Note here we are explicitly assuming that the units of the independent variable, x, are meV so that the temperature units are Kelvin.

A: amplitude of function (NOT AREA!)

x: center of each Lorentzian component

W: full-width at half maximum of the lorentzian component

N(x): Bose occupation factor defined as

$$N(E;T) = \left(1 - \exp\left(-\frac{x}{kT}\right)\right)^{-1}$$

T: Temperature in Kelvin

Smooth Step Function

This function is sometimes more useful than a sloping background if the measured background has a smooth transition from one flat level to another.

$$f(x; A, x_0, W) = \frac{A}{2} \left(1 + erf \left(\frac{x - x_0}{\sqrt{2(W/2.354)^2}} \right) \right)$$

A: Amplitude of transition

 x_0 : location of midpoint of transition

W: full-width at half maximum of the transition

Sloping Background

$$f(x;m,b) = mx + b$$

m: slope

b: y-intercept

Decay

 $f(x;A,\lambda) = (A/\lambda)exp(-x/\lambda) \Theta(x)$ where $\Theta(x)$ is the Heaviside step function so that this function is one-sided.

A: area of function
A: decay constant

KWW

 $f(x;A,\Lambda,\beta) = A \exp(-(x/\Lambda)^{\beta}) \Theta(x)$ where $\Theta(x)$ is the Heaviside step function so that this function is one-sided.

A: amplitude of function (not area)

A: decay constant

β: stretching exponent

FT(KWW)

Fourier transform of the KWW. Note that this should be used with great care, as some features of this function definition are optimized for specific usage. You may wish to contact Dr. Antonio Faraone (301-975-5254, afaraone@nist.gov) for more information on this function.

The ft_KWW function allows the fitting of $S(Q, \omega)$ data using the Fourier transform of a stretched exponential decay. The function has been implemented in a way that automatically accounts for the effect of the instrumental resolution function, in those cases where the instrumental resolution function can be reasonably well described as a Gaussian. In fact, in this case, the convolution with the instrumental resolution can be performed as a product in the time domain with a significant advantage in calculation speed.

In summary, the fitting function can be expressed as:

$$S(Q,E-E_0) = A*FT\{exp[-(t/\tau)^\beta]\} \otimes exp[E^2/(2*\sigma^2)]$$

The following is the meaning of the parameter names as they appear in PAN:

Area = A (The area of the component)
X0=E0 (The center of the spectrum)

Tau= T (The relaxation time. Tau is expressed in ps if the energy units are

meV and it is expressed in ns if the energy units are μ eV)

Beta= β (The stretching exponent)

Res_sigma= σ (The width of the Gaussian instrumental resolution function)

The parameter res_sigma should always be fixed, although it may vary with Q (detector, scattering angle).

It is still possible to use the instrumental resolution convolution as implemented in PAN by fixing the value of res_sigma to a value that is much smaller than the actual instrumental resolution (in effect approximating a delta function).

This ft_KWW algorithm is believed to be accurate. However, numerical effects, the strong correlations between τ and β , and the effect of the resolution function might strongly affect individual results. Although some numerical effects are obvious, other issues might be more subtle. The user must exercise extreme care in the use of this function, and by using it s/he assumes all responsibility for all the results that come from using it to model the data.

Order Parameter

This is a function for fitting a critical exponent in the function

```
I= \{ 10*(1-T/Tc)^{\beta}  for T<=Tc;

\{ 0  for T>Tc:
```

Mean Field Order Parameter

This was added for an unknown user. Its purpose is unknown.

4.0 Analyzing data with PAN: An example

We can analyze some simulated neutron scattering data to show how to use PAN in some detail. If you are a non-neutron scatterer, don't worry...this is just noisy, peaky data used to illustrate how to use PAN. In particular, we will load in the test data set, fit an appropriate model to the data, and extract the group-dependence of some important parameters.

First launch PAN if it is not already running. Next, select <code>File-Load test data</code>. In a few moments a data set that contains a large central peak and two small satellite peaks corrupted by noise should appear. Also, the <code>GROUPS TO FIT text</code> field should have been updated to read "1-20" indicating that there are now 20 groups (or Q-values for you neutron scatterers). You can move the slider control labeled <code>GROUP SELECTION</code> and the data displayed in the window will change. As you move to larger detector numbers, the central peak will be accompanied by two growing satellite peaks (this data simulates a rotational tunneling spectrum taken on a neutron backscattering instrument). Move the slider control so that you are viewing group (detector) 4. Click the right mouse button so that you autoscale. If you wish, you can hold the left mouse button down and drag a rubberband-type zoom box across the plot to enlarge a particular portion of the data window. A right mouse click will always result in zooming out all the way.

We will fit this group first and then fit the remaining groups automatically. The data looks like it has 4 components. The central peak looks approximately Gaussian, the two satellite peaks are approximately Lorentzian, and there is an underlying offset (a background level). Choose background from the drop-menu called Select function. Move the cursor into the plot window and hold down the left mouse button. A dashed line should appear across the extents of the data plot. As you move the cursor up and down in the data window while holding down the left mouse button, the dashed line should follow the cursor. This action is used to specify the offset of the overall model function. Once you are satisfied with the level, release the left mouse button. Now hold down the left mouse button again and move the cursor around the data window. You should see the slope of the line change and pivot about the midpoint of the x-axis. Once you are satisfied with the slope, release the left mouse button. For this function, the slope should be quite small.

Next we will add a Gaussian curve to model the central peak. Choose Gaussian from the Select function menu. Move the cursor over the plot window and hold down the left mouse button. A Gaussian should follow your cursor movements both in location and in height. Change the vertical position to change the Gaussian peak height and change the horizontal position to change the Gaussian peak center. Once you are satisfied that the peak has the correct amplitude as that of the central data peak and is located at the correct position, release the left mouse button. Next hold down the left mouse button and move the cursor horizontally, thus changing the width of the curve. Once you are satisfied with the width release the left mouse button.

Next add a Lorentzian to fit the satellite peak to the left of the central peak. The method to change the amplitude, center, and width of the Lorentzian is exactly the

same as for the Gaussian. Finally, add another Lorentzian to model the satellite peak to the right of the central peak.

You have just specified the initial guesses for the fit using the mouse and now it is time to fit the model to the data. You can look at the actual guess values by pressing the Display fit parameters button and the values should appear in the text box on the right hand side of the main interface. Next press the button named Fit current group. In a moment you should see the result of a least-squares fit of the model to the data. Your final answer may be different but mine is shown below in figure 12. You can see the residuals plotted in the bottom window which, in addition to the χ^2 value, provide a visual goodness-of-fit. The residuals are defined as

$$r_i = \frac{z_i^{fit} - z_i^{data}}{\sigma_i}$$

where σ_i are the uncertainties on the data points (zerr). If you have modeled the data well then the residuals should vary between ±1, as shown by the horizontal dashed lines. It looks like we have a good fit in figure 12.

Figure 12 Fit of model to data for current group.

The model parameters with uncertainties are found in the text panel displayed to the right of the data window.

The next part of the analysis we want to do is to fit all of the groups. However we need to be careful at this stage. Scroll the Group selection slider control down to group 1 and notice how small the satellite peaks have become. There is a possibility that the least-squares routine will have trouble fitting this same model to this data. Therefore we would like to impose a constraint on the area and width of the satellite peaks. Move the Group selection slider control back to group 4 and press the Modify fit parameters button. Set the lower limit for the areas and FWHM (full-width at half maximum) for the Lorentzians (select them using the dropdown menu as shown in figure 9). This means that you need to check the Set low boxes for the Lorentzians and make sure that the Lower limit boxes equal 0.0.

When you have finished this, press the button labeled Fit all groups. You should see fits being performed for each group starting with group 1 and finishing with group 20. Once it is finished you can change the Group selection slider to inspect each fit. Whenever a new group is displayed with its fit, its fit parameters, uncertainties, and χ^2 value are also displayed in the text panel to the right of the data window for you to examine.

Now we would like to look at the dependence of the peak position of the Lorentzian to the right of the central peak on the group (i.e. the Q-dependence of the peak position). First we should note which parameter and curve this corresponds to in terms of our notation discussed above. Inspection of the parameters (see figure 12) indicates that this parameter is #6. Press the Plot fit parameter button and type in 6 in the field labeled parameter #. Press Accept and you should see data that looks similar to that shown in figure 11. You can save these parameters and errors in a three-column formatted ASCII file, print to a postscript file, zoom into the window using the same mouse operations as in the main PAN application, and/or exit the plot utility. You may choose to examine the group-dependence of any of the fit parameters by simply specifying the curve and parameter using the technique discussed above.

5.0 Acknowledgments

This programming effort was done primarily for DAVE, the Data Analysis and Visualization Environment, which is a software package developed at the NIST Center for Neutron Research for the reduction, visualization, and analysis of inelastic neutron scattering data. This work is based upon activities supported by the National Science Foundation under Agreement No. DMR-0454672.

I would like to acknowledge valuable contributions from David Fanning, Craig Markwardt, Ronn Kling, Mark Piper, and Michael D. Galloy. I would also like to acknowledge valuable feedback on this software from David Fanning, Zema Chowdhuri, Jeff Lynn, Matt Woodward, Paul Sokol, Alan Munter, Sungil Park, John Copley, Richard Azuah, Dan Neumann, Craig Brown, Larry Kneller and the many users at the NIST Center for Neutron Research.