“Self shielding” corrections for slab samples in thin containers

We consider a solid slab sample within a container. Two measurements are performed, (i)
on the sample in its container and (ii) on the empty container. The corresponding
measured intensities are as follows:
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I “True” sample intensity

I “True” container intensity

" Measured intensity for sample in container
1" Measured intensity for empty container

f...  Self-shielding of scattering by the container when measuring sample in container
f...  Self-shielding of scattering by the sample when measuring sample in container
f..  Self-shielding of scattering by the container when measuring empty container

Note that all intensities are functions of the scattering angle.

The “true” sample intensity is obtained from the following expression
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where the so-called “sample attenuation factor” SAF=f__ /f_. and the “self-shielding
factor” SSF=f . General expressions for these quantities are available [1], but here we

will use simplified expressions appropriate to the case of a weakly scattering container,
I.e. a container with thin walls and small cross sections.

The factor SSF
We consider a solid slab sample of thickness t, uniformly illuminated by a beam that
makes an angle y, with respect to the normal to the slab (see figures 1 and 2), where

T T . . . .
5 <y, < > Its macroscopic scattering, absorption and total removal cross sections are

Zs, Zaand I, =2 + X, respectively. Its transmission T =exp[—Z tsecy,].



Reflection case
The probability of single scattering into the infinitesimal solid angle 56 when
/2 < |y|<m (see figure 1), followed by escape, is
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Figure 1 Reflection case.

where 5= is the corresponding differential scattering cross section, d? is the distance

traveled through the sample before scattering, and d; is the distance traveled through the
sample after scattering (see figure 1).

Transmission case
The probability of single scattering into the infinitesimal solid angle 52 when
|w| < /2 (see figure 2), followed by escape, is
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When v =y, or when y = —y, the probability of single scattering reduces to
S1(Worv)8Q =52 -exp[-Z tsecy, | = 527T.
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Figure 2 Transmission case




Writing £ =2 t, the SSF is as follows:
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Note that SSF () =SSF(—y ) for all values of y since sec(y)=sec(—y).
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Writing v =26+, we obtain
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The factor SAF
For a weakly scattering container in slab geometry the SAF may be written as follows:

SAF = Zitclexp [ -Zd5 - 2d; |-dy

where t. is the thickness of one of the walls and the integral is performed for all points
within the container on a line parallel to the y axis (figure 3). Figure 3 represent the terms
in the expressions for both the reflection and transmission cases. Writing £ = X;t, the

SAF reads as follows:
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Note that SAF(y)=SAF(—y)for all values of y since sec(y)=sec(—y).
Writing y =26+, we obtain
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[1] See, e.g., J.R.D. Copley, D.L. Price and J. M. Rowe, “A system of programs for the
reduction of data from a time-of-flight spectrometer”, Nucl. Instr. Meth., 107 (1973) 501-
507, ibid., 114 (1974) 411 (erratum).
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Figure 3 Self Attenuation Factor: Transmission and reflection cases




An example

This example is taken from recent measurements by Li Liu (MIT). For these experiments
v, =60°, and ¢ was determined from a transmission measurement in normal incidence,

i.e. with y, =0°. The measured transmission was 96% so £ =—-¢n(0.96) .
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The plot below shows calculated SSFs and SAFs, and the transmission T for v, =60°.
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Appendix: Exact and approximate relationships

1. We have already noted that [SAF(y ) =SAF(—y)| and |SSF(y)=SSF(-y)|

2. The following expressions are valid for all values of (:
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Inspecting these expressions we find that for all v,

SAF(y)=exp(-Csecy)-SAF(y +m)| and |SSF(y) =exp(-£secy)-SSF(y + )|,

3. In the limit of weak scattering by the sample, £ < 1. Writing a =secy,and
b = {secy and expanding the exponentials we obtain
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Hence |SSF ()~ SAF(y)]|.
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