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Overview

- Structure-Property Relationships of Photomagnetic
Coordination Polymer Heterostructures?
- Magnetic properties of a combination of molecules can be changed
by light.
- Our experiments aim to characterize the structure and structural
changes which occur

- In this talk:

- Prussian blue analogues — the specific molecules used

- 3 main experiments performed
- Infrared spectroscopy
- X-ray diffraction
- X-ray absorption spectroscopy



Prussian Blue & Analogues

- Face centered cubic structure

- Repeating pattern:
Fe —CN - Fe
- Prussian Blue “Analogues”
(PBAS)

- Replace one or both Fe with
other metals (M; — CN — M,)

- Examples:
- Fe—-CN-Co
- Cr—CN—Ni
- CoFe and NiCr - discussed in
this talk
- Additional details (not shown):
H,O replaces some M-CN,
Interstitial ions found in crystal

CoFe:
NiCr:;

Fe Co
Cr o Ni

Source: Daniel Pajerowski
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Cobalt Iron — Photomagnetic PBA

~ After lllumination

- CoFe PBA displays
photomagnetic properties
- Below T=20K, CoFe
ferromagnetic
- Red light illumination changes
oxidation state
- Co''—Fel' to Co'—- Fel
- Unpaired electrons leads to higher 0.00 ¢ , , ,
magnetization (see graph)? 0 20 400 B
- Above 20K, CoFe paramagnetic T (k)

- Photoinduced transition still occurs,
but no long range order

- This effect persists to ~150K
- Transition causes size change?
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1. Photoinduced Magnetization of a Cobalt-Iron Cyanide: O. Sato et al., Science Vol. 272

2. Coherent Domain Growth under Photo-Excitation in a Prussian Blue Analogue: M. Hanawa
et al., J. Phys. Society of Japan Vol. 72



Nickel Chromium — Different Properties

- Also exhibits magnetization
changes

- Different stimulus: pressure

- Increased pressure =
Increased anisotropy =
decrease in magnetization

- Effect present up to ~ 65K

- Different lattice constant
from CoFe: a=10.43A
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Source: Effect of pressure on the magnetic properties of TM;[Cr(CN)g],-6H,0,
M Zentkova et al., Phys.: Condens. Matter 2007, 19266217



Creating PBA Films

- PBA are created as thin films using deposition
- Alternating deposition using metal nitrate and metal

hexacyanide
- Nitrates: Co, Ni; HexaCN: Fe, Cr

- Plastic (Melinex 550) used as solid support

- 40 cycles ~ 250nm thickness
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Film Creation Issues

- Dehydration — vacuum pumping of sample may be
removing H,O necessary for structure

- Rb concentration — Interstitial ion amount determines
strength of magnetization effect
- Deposition may also not be working properly

- Plastic substrate does not conduct heat well
- Can lead to samples not cooling to necessary temperatures



PBA Trilayers and New Magnetic Properties

- Create PBA
heterostructure: add € 15
different PBAs in layers 3 10!
- ABA structure: NiCr — CoFe — % -
NiCr > Of .
- Heterostructure displays ‘g’ ' E%%ﬂ'
magnetic properties at higher 0

temperatures than previously 0 10 20 30 40 50 60 70
possible for individual PBAs T (K)

Source: Daniel Pajerowski
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Structure Property Hypothesis

- Hypothesis: Photoinduced change in CoFe affects NICr
layers, causing NICr change

- Several steps:

1. lllumination -> oxid. state change in CoFe
2. State change -> bond length increase -> volume increase
3. Volume incr. -> increased stress on NiICr layers
4. NICr decrease magnetization b/c increased pressure
N Bonds lengthen
Octahedrons are M — CN llumination
units, circles are coordinating — \L Force due to volume increase
ions (Co or Ni)
T 7 ! y Octahedra distorted,
NiCr ° » (é increased anisotropy
L] 4& L ] L [



Experiment Plan

- 3 types of measurements employed:

- Fourier-transform Infrared Spectroscopy (FTIR)
- Infrared light absorbed by vibrational modes of PBA.
- Measure vibrational energies, observe oxidation states
- X-ray Diffraction (XRD)
- Depends on long-range structure of samples
- Allows determination of lattice constants for crystal structures
- Extended X-ray Absorption Fine Structure (EXAFS) Spec.
- Measures local structure
- Can fit model of atom to atom distances to measured data



L
FTIR Spectroscopy: Vibrations

- Vibrations of atoms absorb discrete energies (like a harmonic
oscillator) in IR

- All energies measured simultaneously
- Result is Fourier-transformed to give a transmission spectrum
- Peaks are increased absorption
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FTIR Setup

- We modified an existing FTIR setup to include a cryostat.

- Our experiment requires liquid nitrogen (or lower) temperatures
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FTIR Data

- Able to replicate CoFe
observations with powder

- Data for films is In
progress, waiting on

results
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X-Ray Diffraction: Long Range Structure

- Regular structure of crystals

can be exploited for light AN
scattering

- Depending on angle of - S
scattering, parallel paths may e

—e ° ® e o—

be out of phase

- Constructive interference when
NA=2d*sin®

- Peaks in intensity give values of

O for constructive interference,
find d from above equation

- Lattice constants obtained from
d, based on type of reflection
plane

- Different crystal planes will :
have sets of peaks

Source: wikipedia.org/wiki/X-ray_Crystallography
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XRD Data
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S
XRD and Lattice Constants

- Lattic constants obtained
for both trans. and refl.

- Two values: a=10.05 A and
a=10.43 A. Same results
regardless of film orientation

- Conclusion: CoFe and NICr
form polycrystalline, but
separate, layers

- Each PBA has different lattice
constant

- Compare with mixed solution,
which has single peak
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L
XAFS: Local Structure

- XAFS involves scattering x-rays off a central atom
- Scattered wave can also scatter off neighboring atoms

- Resulting scattered wave composed of multiple waves with varying
amplitudes.

- Amplitudes are determined by path taken. In general, more scatterings =
smaller amplitude

- By modeling a system and calculating the path amplitudes, parameters
in the model can be fit to XAFS data, yielding local structure
information
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Source: wikipedia.org/wiki/File:Diffusion_rayleigh_et_diffraction.png



EXAFS at Brookhaven SNLS

- EXAFS requires x-rays from synchrotrons

- Our data was taken at the National Synchrotron Light
Source at Brookhaven National Laboratory in New York

- Thanks to Bruce Ravel for taking this data




Room Temperature EXAFS D
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Sample EXAFS Prediction and Model
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Conclusion

- Our PBA films, created by deposition, exhibit
magnetization dependent on external stimuli

- Hypothesis — Light affects CoFe, which alters NiCr layers
- XRD data confirms that CoFe, NICr layers are separate

- Room temp EXAFS have good signal and are consistent
with structural measurements from XRD
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