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Introduction 
Reflectometry involves measurement of the intensity of a beam of 

electromagnetic radiation or particle waves reflected by a planar surface and/or 

interfaces. The technique is intrinsically sensitive to the difference of the refractive index 

(or contrast) across surfaces and interfaces.  For the case of specular reflection, i.e., the 

case when the angle of reflection, αr, equals the angle of incidence, αi, [see Figure 1(a)], 

the intensity of the reflected radiation is related to the depth dependence of the index of 

refraction averaged over the lateral dimensions of the surface or interface.   In this 

simplest example of reflectometry, the sharpness of an interface can be quantitatively 

measured, the distance between two or more planar interfaces can be obtained, and the 

strength of the scattering potential, i.e., the index of refraction, between the interfaces can 

be measured relative to that of the medium through which the radiation travels to reach 

the sample surface (in many cases the surrounding medium is air or vacuum—for neutron 

scattering there is little distinction).   In more complex situations, variations of the 

refractive index within the plane of the interface may give rise to diffuse scattering or off-

specular reflectivity, i.e., radiation reflected away from the specular condition [see Figure 

1(b and c)].  From measurements of off-specular reflectivity, correlations between lateral 

variations of the scattering potential along an interface can be deduced.  Off-specular 

scattering introduces a component of wavevector transfer in the plane of the sample 

mostly parallel to the incident neutron beam [Figure 1(b)] [1] or perpendicular to it 

[Figure 1(c)] [23]. 
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Figure 1 Scattering geometry for (a) specular reflectometry, where αr = αi, (b) off-specular 
reflectometry where αr ≠ αi, and (c) glancing incidence diffraction where 2θ ≠ 0.  The components of 
wavevector transfer, Q = kf – ki are shown for each scattering geometry. 

So far, the capabilities of reflectometry have been described without regard to the 

kind of radiation used.  Many detailed discussions of X-ray [4, 5, 6, 7, 8, 9, 10] and 

unpolarized neutron reflectometry [10, 11] from non-magnetic materials can be found in 
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the literature.  Treatments of X-ray reflectometry invariably use concepts of optics and 

Maxwell’s equations.  Treatments of neutron reflectometry can be optical in nature, but 

often treat the neutron beam as a particle wave and use quantum mechanics to calculate 

reflection and transmission probabilities across interfaces bounding potential wells. In the 

present chapter, we focus on reflectometry of magnetic thin films and artificially 

structured magnetic materials using polarized neutron beams. 

Polarized neutron reflectometry is a tool to investigate the magnetization profile 

near the surfaces of crystals, thin films and multilayers. Surface (or interface) sensitivity 

derives from working in glancing incidence geometry near the angle for total external 

reflection.  Polarized neutron reflectometry is highly sensitive, having measured the 

absolute magnetization of a monolayer of iron (~10-4 emu) with 10% precision [12], and 

magnetization density as small as 30 emu/cm3 (e.g., as found in Ga0.97Mn0.3As) with 

comparable precision.  Detection of small moments (from samples with surfaces 

measuring a ~4 cm2 in area) is combined with excellent depth resolution—a fraction of a 

nanometer even for films as thick as several hundred nanometers.  Reflectometry has 

enjoyed dramatic growth during the last decade and has been applied to important 

problems such as, the influence of frozen or pinned magnetization on the origin of 

exchange bias [13], the influence of exchange coupling on magnetic domain structures 

[14, 15], and the identification of spatially inhomogeneous magnetism in nanostructured 

systems [16, 17, 18].  

Several descriptions of polarized neutron reflectometry are available in the 

literature [19, 20, 21, 22, 23, 24, 25].  Recently reviews of polarized neutron 

reflectometry, one that includes illustrative examples [26], and a second very detailed 
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account of the scattering of polarized neutron beams, with copious mathematical 

derivations of formulae, have been published [27,28].  In this chapter, we present a 

tutorial on polarized neutron reflectometry, a description of a polarized neutron 

reflectometer at a pulsed neutron source, and examples of applications of the technique. 

Neutron scattering in reflection (Bragg) geometry 
Reflectometry with unpolarized neutron beams 

In Figure 2, we show the general situation for a neutron beam with wavelength λ 

represented by a plane wave in air (Medium 0) with incident wavevector ki (|ki| = k0 = 

2π/λ) and reflected wavevector kf (reflected by the sample, Medium 1).  A portion of the 

plane wave is transmitted across the reflecting interface with wavevector kt.  Depending 

upon the distribution of chemical or magnetic inhomogenities in the plane of the sample, 

neutron radiation can be scattered in directions such that 2θ ≠ 0 and/or αr ≠ αi [see Figure 

1].  The case of elastic and specular (2θ = 0 and αr = αi) reflection is the simplest to treat.  

Neutron scattering is called elastic when the energy 
nm

k
E

2

22
0h

=  of the neutron is 

conserved.  Thus, the magnitudes of ki and kf are equal, i.e., |ki| = | kf|.  The magnitude of 

kt in Medium 1, |kt| = k1, may be (and usually is) different than that of Medium 0.   
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Figure 2 Schematic diagram showing the incident, reflected and transmitted wavevectors.  The 
sample in this case is Medium 1. 

The quantity measured in a neutron reflectometry experiment is the intensity of 

the neutron beam reflected from the surface.  The probability of reflection or the 

reflectivity is given by the reflected intensity divided by the incident intensity. To 

calculate the reflectivity of an interface, we apply the time-independent Schrödinger 

equation [29] to obtain a solution for the wave function, Ψ, representing the neutron 

wave inside and outside of the reflecting sample. Dropping the parts of the wave function 

with wavevector components parallel to the interface (we consider a potential that varies 

in only one dimension which cannot change the neturon’s wavevector parallel to the 

interface), the wave functions in mediums 0 and 1 are given by: 
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Equation 1 

Unless otherwise noted, ki is the ⊥–component of the wavevector ki. 
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The neutron reflectivity, R, of the interface is related to the reflection amplitude, 

r, by R = rr*.  Ψ is obtained by solving Schrödinger’s equation: 

)()()(
2 2

22

yEyyV
ymn

Ψ=Ψ+
∂
∂h  

Equation 2 

where V(y) is the depth dependent scattering potential.  For a planar sample, the neutron 

(nuclear) scattering potential is represented by the expression: 

)(2 2

y
m

V
n

n ρπh
=  

Equation 3 

where ρ(y) is the neutron scattering length density in units of Å-2.  Owing to the decay in 

the strength of the reflected neutron beam with wavevector transfer (discussed later), 

neutron reflectometry usually involves measurements that are restricted to fairly small 

wavevector transfer, Q⊥ < 0.3 Å.  Over this range of Q⊥, the scattering medium can be 

considered to consist of a continuous scattering length density  of N (scattering centers or 

formula units per unit volume) each with coherent neutron scattering length b.  For 

systems composed of a mixture of elements or formula units,  

i

J

i
ibN∑=ρ  

Equation 4 

where J is the number of distinct isotopes, and Ni and bi are the number density and 

scattering length for the i-th species.  Values of N, b and ρ are given for a number of 

common materials in Table 1 30.    

Invoking the condition of elastic scattering, Equation 2 can be rewritten as:  
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In the language of ordinary light optics, the ⊥-component of the wavevector in 

Medium 1, k1, is related to the ⊥-component of the wavevector in Medium 0, k0, through 

the index of refraction, n, by  

02
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01
41 k
k

nkk πρ
−==  

Equation 6 

During an experiment, the intensity of the reflected radiation is measured for 

selected values of k0, which are chosen either by changing the angle of incidence of the 

beam to the sample surface, αi, and/or by changing the wavelength, λ, of the neutron 

beam.  For sufficiently small values of k0, the index of refraction will be imaginary, so 

the neutron wave in Medium 1 is evanescent (the wave does not loose energy to Medium 

1 [31]).  Therefore, the wave is reflected by the sample with unit probability.  The 

wavevector transfer Q⊥ at which n obtains a real component is the called the critical edge, 

Qc.  For Q⊥ < Qc, the reflected intensity is unity, and provides a means to normalize the 

reflectivity to an absolute scale (in contrast to small angle neutron scattering).  Since the 

reflectivity of the sample is unity below Qc, the scattering in this region is strong, so a 

dynamical treatment of the scattering is required. By dynamical, we mean the wave 

function inside Medium 1 is not the same as that illuminating the sample. Because the 

Born approximation [29] is a perturbation theory, it is valid for weak scattering, e.g., 

small-angle neutron scattering in transmission geometry, so this approximation is not 
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adequate for calculating reflection of neutrons or X-rays at glancing angles from planar 

or nearly planar interfaces. 
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Table 1 Listing of common elements and their neutron nuclear and magnetic scattering length densities. 

Material  Number

density, N 

 [Å-3] 

Nuclear 

scattering 

length, b [Å] 

Magnetic moment, 

µ [µB] 

Nuclear scattering length 

density, ρn [Å-2] 

Magnetic scattering length 

density, ρm [Å-2] 

Ag       5.86 x10-2 5.92 x10-5 3.47 x10-6

Al      6.02 3.45 2.08

Al2O3      2.13 24.4 5.21

Au      5.90 7.90 4.66

Co     9.09 2.49 1.715 2.26 4.12 x10-6 

Fe     8.47 9.45 2.219 8.00 4.97 x10-6 

FeF2      2.75 20.76 5.71

Fe2O3 

(hematite) 

2.00     36.32 7.26

Fe3O4 1.35    51.57 4.1 6.97 1.46 x10-6 
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(magnetite) 

GaAs      2.21 13.87 3.07

LaAlO3      1.84 29.11 5.34

LaFeO3      1.65 35.11 5.78

LaMnO3      1.71 21.93 3.75

MgF2      3.07 16.68 5.12

MgO      5.35 11.18 5.98

MnF2      2.58 7.58 1.96

Nb      5.44 7.05 3.84

Ni     9.13 10.3 0.604 9.40 1.46 x10-6 

58Ni     9.13 14.4 0.604 13.14 1.46 x10-6 

62Ni     9.13 -8.7 0.604 -7.94 1.46 x10-6 

Ni81Fe19     8.93 10.14 1.04 9.06 2.46 x10-6 

NiO      5.49 16.11 8.84

Pd      6.79 5.91 4.01
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Pt      6.60 9.60 6.34

Pu  4.88 5.8±2.3  2.8±1.1  

Si      4.99 4.15 2.07

SiO2      2.66 15.76 4.19

SrTiO3      1.68 21.00 3.54

U      4.82 8.417 4.06

V      6.18 -0.38 -0.23
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Theoretical Example 1: Reflection from a perfect interface 
surrounded by two media of infinite extent 

The goal of a reflection experiment is to determine the distribution of material 

within the sample from measurements of the sample reflectivity as a function of Q⊥.  To 

accomplish this goal, we need to determine the probabilities that the wave function is 

reflected and transmitted by the sample.  Conservation of neutron intensity, i.e., |Ψ|2 = 1, 

and conservation of momentum require that Ψ(y) and its derivative, 
y∂

∂ψ , be continuous 

across the interface. Thus,  
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Equation 7 

Solving Equation 7 for r, the reflection amplitude of a single interface between two 

media of infinite extent, gives: 
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from which the reflectivity of a single interface is obtained: 
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As an example to illustrate application of Equation 9, we consider the case of an 

unpolarized neutron beam reflecting from a perfectly smooth silicon substrate 

(surrounded by air). The neutron scattering length density for Si is ρSi = 2.07 x10-6 Å-2 
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(obtained from the entries listed in Table 1), and the depth dependence of the scattering 

length density profile for the sample is shown in Figure 3(a).  The reflectivity versus Q⊥ 

[Figure 3(b)] is calculated using Equation 9.  The position of the critical edge, Qc, is 

determined by the condition n = 0, i.e., SicQ πρ4= . 
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Figure 3 (a) Unpolarized neutron scattering length density profile of a perfect interface between air 
and a silicon substrate (inset).  (b) The calculated reflectivity for the interface (a) is shown by the 
solid curve.  The dashed curve represents a reflectivity curve calculated using the Born 
approximation (see text) and varies as Q⊥

-4 normalized to 0.9 times the solid curve at Q⊥ = 0.2Å-1 (see 
text). 

The dynamical calculation of the silicon substrate reflectivity [solid curve, Figure 

3(b)] in the region of Q⊥ ~ 0.1 Å-1 is similar to that obtained  the Born approximation 

(i.e., the kinematical case, dashed curve) from which the reflectivity is equated to the 

Fourier transform of the scattering length density profile: 
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Equation 10 

 However, for smaller values of Q⊥ the two reflectivity curves diverge.  
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In the large Q⊥ regime, the decay of the curve scales as Q .  This decay, called 

the Fresnel decay [6], is a property of reflection from a planar surface, and thus contains 

little information leading to a better understanding of the spatial representation of matter 

beneath the surface.   However, the Fresnel decay rapidly diminishes the reflected 

neutron beam intensity until it can become swamped by external sources of background, 

including incoherent scattering from the substrate.   

4−
⊥

Theoretical Example 2: Reflection from perfectly flat stratified media 
For the case of reflection from a single perfect interface, there is little additional 

information that can be obtained beyond that provided by the position of the critical edge 

(surface roughness can also be measured—a topic discussed later).  More interesting and 

realistic cases involve reflection from stratified media.  In these cases, the scattering 

length density is not constant with depth, and indeed abrupt changes of the scattering 

length density, such as those produced by buried interfaces, modulate the reflectivity.   

Now consider the representation of a stratified sample in Figure 4  one depicting 

reflection of a neutron beam from a perfect interface formed by the boundary between air 

and the surface of a thin film with thickness ∆ that is in contact with a smooth Si 

substrate of infinite thickness. 
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Figure 4 Schematic diagram showing the wavevectors in a stratified medium.  The thickness of the 
thin film is ∆. 

 The wave functions in the different media are: 
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Equation 11 

Again Schrödinger’s equation is solved yielding a matrix equation from which the 

reflection and transmission amplitudes, r and t, can be obtained: 
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Equation 12 represents two simultaneous equations that can be solved to obtain r.  (Note, 

Equation 7 is recovered for the case of a single (air/substrate) interface for the case of ∆ = 

0.) 
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Equation 14 

To calculate a reflectivity curve, a value of Q⊥ is chosen from which k0 (= Q⊥/2, a 

real quantity) is obtained.  Next, the ⊥-components of the wavevector in Medium 1 and 

Medium 2 are calculated (using Equation 14) from which the reflection amplitudes for a 

pair of interfaces are obtained.  The reflection amplitudes for an ensemble of interfaces 

(in this case two, see Equation 14), r, is related to the reflection amplitudes of each 

interface, r01 and r12 (here, the amplitude of the wave reflected by the interface between 

Medium m and Medium n is called rmn), in the ensemble after combination with a phase 

factor, , as appropriate (the wave reflected by the interface between Medium 1 and 

Medium 2 is out of phase by the path length 2∆ with respect to the wave reflected by the 

interface between Medium 0 and Medium 1).  This procedure was performed to obtain 

the reflectivity curve (Figure 5) for a sample consisting of a 20 nm thick perfectly flat 

layer of material with the nuclear scattering length density of Fe on a perfect Si substrate. 

∆21ike
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Figure 5 (a) The nuclear scattering length density profile of a perfect thin iron film on silicon (inset).  
(b)The reflectivity of the sample is shown as the solid curve.  The reflectivities of a silicon substrate 
(dotted curve) and a substrate with the nuclear scattering length density of iron (dashed curve) are 
shown for comparison. 

The most notable feature of the solid curve [Figure 5(b)] is the oscillation of the 

reflectivity.  The period of the oscillation in the kinematical limit (far from the critical 

edge where dynamic effects are most pronounced) is approximately equal to 2π/∆.   The 

amplitude of the oscillation is related to the contrast or difference between the scattering 

length densities of the iron film and silicon substrate.  A second notable feature is the 

position of the critical edge, which for the 20 nm Fe/Si sample still occurs at a position 

coinciding with that of the silicon substrate and not at the position for an iron substrate 

[compare the dotted and dashed curves in Figure 5(b)].  Unlike the case for X-ray 

reflectometry, in which only a couple of nanometers of material is sufficient to be 

opaque, and thus create a well-defined critical edge, the critical edge for neutron 

reflectivity is often determined by the sample substrate, and not the thin film owing to the 

fact that a neutron beam is a highly penetrating probe.   
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Figure 6 Comparison of reflectivity curves from Fe films with different thicknesses.  The difference 
of 3% in thickness would be easily resolved. 

One strength of reflectometry is its ability to measure layer thickness with very 

high precision and accuracy (for a discussion of the distinction see Ref. [32]).  An 

illustrative example is to compare the calculated reflectivity curves for iron films of 20.0 

nm and 20.6 nm thickness  corresponding to a 3% change in film thickness (Figure 6).  

The shift between the reflectivity curves at large wavevector transfer is easily 

distinguished, because the resolvable wavevector transfer is smaller than the shift.  For 

small scattering angles, the resolution of a reflectometer, δQ/Q is approximately given 

by: 

222
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δλ
θ
δθδ
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Equation 15 
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The first term is determined by a combination of factors including sample size 

and the dimensions of slits that collimate the incoming neutron beam.  For glancing 

angles of incidence (typically less than 5°), δθ/θ is of order 2% (root-mean-square). The 

second term is determined by how well the wavelength of the incident neutron beam is 

measured.  For situations in which a graphite monochromator selects the wavelength (as 

used for example at a nuclear reactor), δλ/λ is typically 1 to 2% (rms).  For situations in 

which the time-of-flight technique measures neutron wavelength (as used for example at 

a short pulsed neutron source) δλ/λ is typically 0.2% (rms).  So, with little effort, the 

resolution of a reflectometer in δQ/Q can be made less than 3% (rms).  Consequently, the 

change of fringe phase, which is about 3% for the case illustrated in Figure 6, can be 

readily measured.  

In contrast to measuring sub-nanometer changes in film thickness, detection of a 

single sub-nanometer thick film is considerably more challenging.  The Fresnel decay of 

the reflectivity restricts the degree to which perturbations in the scattering length density 

profile over thin layers can be measured. Let Qmax is the maximum value of Q⊥ that can 

be measured before the reflectivity, Rmin, is approximately equal to the instrumental 

background. Thin films having thickness ∆ > 2π/Qmax can perturb the reflectivity by 

superimposing oscillations on the Fresnel decay.  In principle, by measuring the period 

and amplitude of the oscillations, information about the thickness of the thin film and its 

composition can be inferred.  On the other hand, for films with thickness ∆ < 2π/Qmax the 

perturbation to the reflectivity might well be missed on account that the first pair of 

fringe maximum and minimum occur at wavevector transfer so large that the intensity of 

 21



the reflected beam is below Rmin (in other words, the oscillations of the reflectivity curve 

might be swamped by instrumental background).  

Neutron reflectivity has been measured to values of Rmin = 10-8 under ideal 

conditions. In these conditions, Qmax might be on order of 0.3 Å-1, so detection of films as 

thin as 2 nm might be possible.   However, most experiments are not conducted under 

ideal circumstances.  For example, experiments usually involve sample environment 

equipment, e.g., cryostats etc., or samples that are either not perfectly smooth or are 

themselves sources of incoherent scattering.  In these situations neutron reflectivity 

measurements to less than 10-7 are often not achievable. 

Theoretical Example 3: Reflection from “real-world” stratified media 
The first two examples of perfect interfaces illustrate the importance of the critical 

edge (providing a means to place the reflectivity curve on an absolute scale), fringe 

period (related to layer thickness) and fringe amplitude (related to change of, or contrast 

between, scattering length density across an interface).   Since real systems can be less 

than perfect, we consider the case of rough or diffused interfaces.  This case serves to 

show how reflectometry can be a useful tool to study systems that are imperfect (indeed 

reflectometry provides a useful measure of imperfection).   

Consider the case where the diffusion of Fe and Si across the Fe/Si interface in 

the previous example obeys Fick’s second law [33].  We further assume the characteristic 

diffusion length, σ, of Fe into the Si matrix is the same as Si into the Fe matrix (though 

this assumption is unlikely to be correct).  In this case, the concentrations of Fe and Si 

with depth (in units of atoms/Å3) are given by: 
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Equation 16 

After substitution of Equation 16 into Equation 9, and using the appropriate 

values of the neutron scattering lengths and densities for Fe and Si (see Table 1), the 

neutron scattering length density profile is obtained: 
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Equation 17 

The variation of the neutron scattering length density across the interface is 

represented by an error function connecting the scattering length densities of pure Fe and 

pure Si.  We note the derivative of the error function with argument 
σ2
∆−y  is 

proportional to a Gaussian function with root-mean-square width of σ [34].  The 

scattering length density profile for a 20 nm thick Fe layer bounded by a diffuse air/Fe 

surface (i.e., a rough surface) and diffuse Fe/Si interface with characteristic widths of σ = 

5 Å is shown in Figure 7(a). 
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Figure 7 (a) Representation of the Fe/Si sample with rough and/or diffuse interfaces. (b) The 
derivative of the scattering length density profiles consisting of a pair of Gaussian profiles from 
which (a) is obtained upon integration. 

While the scattering length density profile in Figure 7(a) can be obtained using 

Equation 17, in fact the profile shown in the figure was obtained by integrating the 

derivative of the scattering length density profile with respect to depth (y-coordinate) 

[Figure 7(b)].  The peaks in Figure 7(b) are Gaussian peaks whose positions, widths and 

integrals correspond to the positions, diffusion or roughness widths, and contrast across 

the interfaces, respectively. For example, the integral of the peak at y = 0 Å in Figure 7(b) 

is ρFe – ρair = 8x10-6 Å-2.  One motivation for constructing the derivative of the scattering 

length density profile (and then integrating it) is to allow the possibility for interfaces to 

be positioned close together.  By close together we mean the thickness of one or both 

layers on either side of an interface is thinner than the rms width attributed to the 

interface.  While arguments can be made whether such a situation is physically 

meaningful, mathematically the situation corresponds to one where tails of adjacent 

Gaussian peaks overlap, and certainly such a profile can be integrated.  When the tails of 

two Gaussian peaks overlap (significantly), the profile obtained from integrating the 

 24



derivative profile will not yield an error function variation between the two interfaces, but 

may nevertheless produce a calculated reflectivity curve that closely resembles a 

measured reflectivity.   It should be emphasized that only in situations where σmn<< ∆m 

and σmn << ∆n, should the value of σmn be interpreted as an interface width and ∆ as a 

layer thickness. Otherwise, the parameters of a density profile  ones that yield a well-

fitting reflectivity curve, have little meaning, though the density profile might accurately 

represent the scattering potential of the system. 

The process for calculating the reflectivity of the “roughened” sample first 

involves approximating the continuous profile in Figure 7 by a discrete sequence of thin 

slabs of width δ with step-like changes in scattering length density.  The choice of δ, i.e., 

the thickness over which ρ is constant, is made such that δ << 2 π/Qmax a relation 

assuring the Sampling Theorem of Fourier analysis [35] is satisfied.  An example of such 

an approximation for δ = 2 Å is shown in Figure 8.  
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Figure 8 (a) Variation of the scattering length density profile of the air/Fe interface for σ = 5 Å is 
shown.  (b) Approximation of the continuous function in (a) using discrete steps. 
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There are two common approaches to calculate the (dynamical) reflectivity using 

the approximate scattering length density profile shown in Figure 8(a).  The first 

approach, which is suitable for calculating the scattering length density profiles from 

scalar potentials (Equation 3 is an example of a scalar potential) is to use Equation 14 to 

calculate the reflection amplitude of the interface between the bottom-most thin slab and 

the infinitely thick substrate.  Let the reflection amplitude of this interface be rmn 

(bounded by Medium m = n-1 and Medium n—the substrate).  Then, the reflection 

amplitude of the next higher interface  the m-1m-th interface, is computed using rmn as 

the reflection amplitude of the phase-shifted term in Equation 14.  This equation is 

applied recursively (as indicated in Figure 8(b) for the uv-th interface) until the top 

interface (the air/sample interface) is reached.  Calculation of the reflectivity by 

recursively applying Equation 14 (for a particular Q⊥) is required in order to properly 

account for dynamical scattering of the neutron beam by the sample surface at glancing 

angles.  In other words, were the Born approximation a good representation of the 

scattering, then a recursive calculation to obtain the reflectivity curve would not be 

necessary.  The recursive calculation is often referred to as the Parratt formalism [4]. 

The second approach to calculate the reflectivity curve is to generalize the matrix 

relation (Equation 12) for an arbitrary number of thin slabs, and then to solve the 

simultaneous equations to obtain the reflection amplitude of the ensemble (i.e., the entire 

sample).  The second approach is one that can be used to calculate the reflection 

amplitude of a sample that might be represented by a scalar or vector potential (an 

example of a vector potential is one that includes the vector magnetization of a sample).  
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The matrix relation is generalized to the case of an any number of thin slabs as follows 

(for a detailed derivation see Ref. [28]):  
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Equation 18 

The subscript “j” in Equation 18 represents the j-th medium or slab.  So, for example, kj 

is the magnitude of the ⊥-component of the wavevector in the j-th medium (see Equation 

14), and δj is the thickness of the medium over which the scattering length density is 

considered constant [2 Å for the case of Figure 8(b)].    

The reflectivity calculated for a 20 nm thick Fe film with roughened interfaces 

[whose scattering length density profile is shown in Figure 8(b)] is the solid curve in 

Figure 9.  The case for the ideal Fe film [whose scattering length density profile is shown 

in Figure 5(b)] is the dashed curve in the figure.   
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Figure 9 The influence of rough or diffuse interfaces is to attenuate the reflectivity with Q⊥.  The 
“rough” and “N-C” (computed using the Nevot and Croce relation)  curves are essentially identical. 

The reflectivity curve of a sample with rough or diffuse interfaces is attenuated 

more so than that of a smooth sample. The attenuation increases with Q⊥.  In fact, for the 

case of a single interface, Nevot and Croce [36] have analytically shown that the 

reflection amplitude of a single rough interface, rr, having short length-scale roughness 

(Q⊥σ << 1) is related to that of the ideal interface, ri, by the relation: 

( )2/exp 2σt
ir QQrr ⊥⊥=  

Equation 19 

where  (= ktQ⊥ 1f – k1i) is the wavevector transfer in the sample. As the kinematical limit 

is approached (i.e., ), the attenuation factor is identical to a “static” Debye-

Waller factor [37] (application of Equation 19 to the “smooth” curve in Figure 9 yields 

the red “N-C” curve).  The important consequence of this observation is that interface 

roughness (or diffusion) will further limit the accessible region of wavevector transfer, 

⊥⊥ → QQt
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and consequently the sensitivity of reflectometry to changes of the scattering length 

density profile over thin layers.  The attenuation of the reflectivity with roughness is a 

strong function of σ and Q⊥; thus, more information can be extracted from samples with 

smooth interfaces than those with rough interfaces (although the physics of rough 

interfaces are often interesting!).  For many experiments, useful information can be 

obtained from samples with (rms) interface roughness on the order of 10 Å, whereas, for 

samples with interface roughness of 20+ Å, success of the experiment may be hopelessly 

compromised. 

The previous three theoretical examples have illustrated useful concepts and 

interpretations of reflectivity curves.  The measurements and their interpretations are 

summarized in Table 2. 

Table 2 Listing of measurements and the information yielded by the measurements. 

Measurement feature Information obtained from a sample of cm2 or so size 

Position of critical edge, Qc Nuclear (chemical) composition of the neutron-optically 

thick part of the sample, often the substrate. 

Intensity for Q < Qc Unit reflectivity provides a means of normalization to an 

absolute scale. 

Periodicity of the fringes Provides measurement of layer thickness.  Thickness 

measurement with uncertainty of 3% is routinely 

achieved.  Thickness measurement to less than 1 nm can 

be achieved. 

Amplitude of the fringes Nuclear (chemical) contrast across an interface. 

Attenuation of the reflectivity Roughness of an interface(s) or diffusion across an 
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interface(s).  Attenuation of the reflectivity provide 

usually establishes a lower limit (typically of order 1-2 

nm) of the sensitivity of reflectometry to detect thin 

layers. 

Reflectometry with polarized neutron beams 
In the previous section, neutron reflectometry was discussed in terms of the 

reflection of neutron beams from scattering potentials that are purely nuclear in origin.  

Since the neutron possesses an intrinsic magnetic moment and spin, the scattering 

potential may be spin dependent.  There are two reasons that the interaction between a 

neutron and matter may depend on the neutron’s spin. In some scattering processes (e.g., 

incoherent scattering of neutrons by hydrogen), the nuclear spin of an atom can interact 

with the spin of a neutron.  On other occasions, the nuclei in a material from which the 

neutron scatters, may possess net spin and be polarized.   Examples include spin 

polarized 3He nuclei [38], or spin polarized Ga or As nuclei in the presence of a magnetic 

material [39].  The spin dependence of the potential for these examples involves two 

neutron scattering lengths, b+ and b-, where the sign of the term indicates whether the 

spin of the nuclei is parallel or anti-parallel to the laboratory magnetic field of reference 

(see Figure 1), which will later be identified with the polarization axis of the neutron 

beam. 
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Figure 10 Diagram of a reflection experiment in which the sample is immersed in a magnetic field. 

A commonly encountered second case involves the interaction of the neutron spin 

with atomic magnetism or other source of magnetic induction.  The modification to the 

scattering potential (including the nuclear potential) is given by: 

B⋅=+= µmnmn VVVV  

Equation 20 

Here,  is the (spatially dependent) magnetic induction vector, and B µ  is the 

magnetic moment of the neutron, where σµµ n= , µn = -1.913 µN (the negative sign 

indicates that the neutron moment and its spin are anti-parallel), and σ is a linear 

combination of the (2 x 2) Pauli matrices [29] directed along each of the three orthogonal 

spatial axes with the magnetic field direction taken to lie along the -axis (Figure 10).  

The “ ”-sign in Equation 20 is taken to be negative (positive) if the neutron spin is 

parallel (anti-parallel) to the laboratory field of reference (

ẑ

m

H  in Figure 10).  Since µn is 

negative, the quantity – µnB is positive, thus, adding to a normally positive nuclear 

scattering length—one for a repulsive potential (Mn, however, is an example of an atom 
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with a negative scattering length—an attractive potential). Fundamentally, the neutron 

spin interacts with magnetic induction, , so a materials-property that gives rise to , 

e.g., orbital and/or spin moments of atoms, or accumulation of spin in electronic devices, 

in principle can affect the neutron scattering process.  The fact that the neutron spin 

interacts with magnetic induction and not magnetic field [40, 41, 42, 43] is fortunate, 

since were this not the case neutron scattering might not be a useful a tool in the  study of 

magnetism. 

B B

+
zB

 Expressing the scattering potential V in matrix notation, we obtain [28]: 
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Equation 21 

The elements of the matrices are understood to depend on position, i.e., the nuclear 

scattering length density term, ρn = ρn(y), etc. (in principle, dependence on x and z is also 

possible to observe with off-specular reflectometry).  It is important to recognize that 

while most often the nuclear scattering potential outside of the sample is zero, ρn = 0, this 

is not necessarily the case for the magnetic induction.  For example, in a polarized 

neutron reflectometry experiment, some magnetic field (as little as a couple Oe may be 

needed) is nearly always applied to the sample, in order to maintain the polarization of 

the neutron beam.  Since neutron reflection occurs across interfaces with different 

scattering length densities (nuclear or magnetic), the field applied to the sample and the 

field inside the sample being the same do not yield contrast across the interface.  Setting 

MHB += 0µ , where  is the intensity of magnetization, and for fields applied along 

, Equation 21 can be rewritten as: 

M

ẑ
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Equation 22 

Equation 22 is a relation for the potential difference, ( )zVδ , between the sample and the 

surrounding medium (here, assumed to be air, but for cases in which the sample is not 

surrounded by air, the nuclear scattering length density of the surrounding medium must 

also be removed from ρn). The neutron magnetic scattering length density can be defined 

in terms similar to those used to define the neutron nuclear scattering length density 

(Equation 4). 
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π 22 h
 

Equation 23 

The units of the magnetic scattering length, p , are Å.  For the magnetic moment 

per formula unit, µ , expressed in units of µB, C = 2.645 x10-5 ÅµB
-1.  If, rather, the 

volume magnetization density, m , is known in units of Tesla, then = 2.9109 x10C ′ -5/4π 

Å-2T-1; otherwise, for  in units of emu/cmm 3, C ′ = 2.853 x10-9 Å-2cm3/emu. Substituting 

Equation 23 into Equation 22 yields: 

( )
−+
−+

=
mznmymx

mymxmzn

n i
i

m
zV

ρρρρ
ρρρρπδ

22 h  

Equation 24 

Finally, we associate the so-called non-spin-flip, ρ++  and ρ--, and spin-flip 

scattering potentials, ρ+-  and ρ-+, with the matrix elements in Equation 24.  
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Equation 25 

The “+” (“-“) sign is for the neutron spin parallel (anti-parallel) to the applied 

field, so the positive magnetic scattering potential adds to the normally positive 

(repulsive) nuclear scattering potential.  So, for example, ρ++ is the element of the 

scattering potential attributed to the scattering of an incident neutron with spin-up that 

does not change the orientation of the neutron spin with respect to the magnetic field. 

Likewise, ρ+- is the element of the scattering potential attributed to the scattering of an 

incident neutron that changes its spin from up to down, and so on. 

We now desire a solution to Schrödinger’s equation one that takes into account 

the spin dependence of the scattering potential (Equation 25) and the spin dependence of 

the neutron wave function: 
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Equation 26 

The value of k± is for the ⊥-component (or y-component in Figure 10) of the 

wavevector for the different neutron spin states.  The spin dependence of k± arises from 

the energy dependence of the neutron spin in the magnetic field.  In the field, the 

refractive index becomes spin-dependent (i.e., birefringent). 

 34



( )
02

0
0

4
1 k

k
knk mn ρ±

−== ±±

ρπ
 

Equation 27 

The spin dependence of the incident neutron wave function contained in U+ and U- is 

determined by the polarization of the incident neutron beam.   

Theoretical Example 4: Reflection of a polarized neutron beam from a 
magnetic film 

In this example, we consider the reflection of a polarized neutron beam from a 

magnetic thin film in which the direction of magnetic induction is uniform.  This example 

illustrates how the Parratt formalism developed earlier for unpolarized neutron reflection 

can be straightforwardly applied to a (saturated) magnetic thin film.  Since the direction 

of magnetic induction is assumed to be parallel to the applied field, and the direction is 

uniform throughout the film (though the magnitude of the induction need not be 

uniform), the off-diagonal entries in the matrix of Equation 25 are zero.  We now imagine 

performing an experiment involving two measurements of the sample reflectivity; first 

with spin-up neutrons (so U+ = 1 and U- = 0), and then later with spin-down neutrons (so 

U+ = 0 and U- = 1).  A device called a spin-flipper (discussed later) flips the neutron spins 

from one state to the other.  Equation 18 is easily generalized to account for the spin 

dependence of the neutron scattering potential [28]. 
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Equation 28 
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In the previous example of a thin Fe layer on Si, we had considered the 20 nm 

thick layer to be a non-magnetic material with the nuclear scattering length density of Fe.  

Now, we consider the Fe to be fully saturated with magnetization parallel to the field as 

shown in Figure 10.  The magnetic moment of an Fe atom is µFe = 2.219 µB, so the 

neutron magnetic scattering length density is  Å61097.4 −== xCN FeFem µρ -2 (Table 1).   

The scattering length density profiles for spin-up and spin-down neutrons are shown in 

Figure 11(a), as is the profile of the nuclear scattering length density [Figure 7(a)] alone 

for the sake of comparison. Depending upon whether the polarization of the neutron 

beam is parallel or anti-parallel to H , ρm either adds or subtracts from ρn.  The 

reflectivities for spin-up neutrons, R++ [for which the blue curve in Figure 11(a) is 

appropriate], and spin-down neutrons, R--, [for which the red curve in Figure 11(a) is 

appropriate] are shown in Figure 11(b).  The dotted curve in Figure 11(b) is the 

reflectivity of a non-magnetic film with the nuclear scattering length density of Fe 

(Figure 7), and would not be measured from a magnetized film of Fe with polarized 

neutron beams.  In this example, the splitting between the R++ and R-- is a measure of the 

depth profile of the sample magnetization projected onto the applied field direction. 
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Figure 11 (a) Bifurcation of the magnetic scattering length densities profiles depending upon whether 
the neutron spin is parallel (++, blue curve) or anti-parallel (--, red curve) to the direction of the 
applied magnetic field.  The dotted curve is the nuclear scattering length density profile.  (b)  The R++ 
and R-- reflectivity of the sample is shown as the blue and red curves, respectively.  The dashed curve 
is the reflectivity curve for the case of a film with the nuclear scattering length density of Fe (and not 
magnetic). 

Influence of imperfect polarization on reflectivity curves 
In the preceding discussions, reflectivity curves were calculated for neutron 

beams that were assumed to contain only spin-up neutrons or spin-down neutrons.  In 

other words the neutron beams were ideally polarized.  In practice, the polarization of a 

neutron beam, 

−+

−+

+
−

=
II
II

P  

Equation 29 

where I+ and I,- represent the numbers or fractions of spin-up and spin-down neutrons, 

respectively, is not 100%.  Typically, polarizations of order 90+ % are available for 

reflectometry experiments. 

In order to produce a polarized neutron beam, polarization devices (discussed 

later) are inserted into the beam line before and sometimes after the sample.  A 
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polarization device acts to suppress one spin state by either absorbing the undesired spin 

state (such a device is often called a polarization filter), or by spatially separating the two 

spin states through reflection from magnetized materials.  Nearly all polarized neutron 

beams contain some fraction of undesired spins.  Assume the desired spin state is the 

spin-up state.  The contamination of the polarized neutron beam is attributed to spin-

down neutrons.  The polarization of the neutron beam approaches 100%, when the ratio, 

called the flipping ratio 
−

+=
I
I

F , of desired neutron spins to undesired neutrons spins 

becomes large, in fact:  

1
1

+
−

=
F
FP  

Equation 30 

Since the transmission of a neutron beam through polarizing supermirrors is 

typically reduced by about 30% due to absorption of the beam by the Si substrates and Co 

in the coatings, experimentalists are best served by neutron beams with just enough 

polarization to obtain the data needed to solve a problem.  Somewhat counter-intuitively, 

it may sometimes be more advantageous to study highly magnetic materials with higher 

neutron polarizations than used for materials that are only slightly magnetic.  To 

understand this point, we assume that rather than using the perfectly polarized neutron 

beam in Theoretical Example 4, we use one having a flipping ratio of 10 (i.e., 1 in 10 

neutrons has the wrong spin state, P = 82%).  The as-measured spin-up reflectivity will 

be composed of 0.9R++ [Figure 11(b)] and 0.1R-- [Figure 11(b)], which hardly changes 

the result (compare the solid and dashed blue curves in Figure 12).  However, since the 

spin-up reflectivity is so much larger than the spin-down reflectivity (in this example), 
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the as-measured spin-down reflectivity will consist of 0.1R++  (a large source of 

contamination) and 0.9R-- (compare the solid and dashed red curves in Figure 12).  

Failure to account for imperfection of the polarized neutron beam would lead one to 

mistakenly conclude that the Fe film was less magnetic than it actually is.  Provided the 

polarization of the neutron instrument is known, the true reflectivity curves can be 

obtained from reflectivity measurements using neutron beams with less than 100% 

polarization [44]. 
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Figure 12  Reflectivity curves calculated for an ideally polarized neutron beam (dashed curves) are 
compared to those calculated for a neutron beam with 82% polarization (solid curves).  The large 
spin-up reflectivity (blue curve) is hardly affected by a poorly polarized neutron beam.  On the other 
hand, the contamination in the poorly polarized neutron beam greatly perturbs the much weaker 
spin-down reflectivity (red curve), because the contamination when measuring spin-down is spin-up 
and the spin-up reflectivity is much larger than the spin-down reflectivity. 

In contrast, for the case of a material that is only weakly magnetic, e.g., a 

magnetic semiconductor with magnetization ~30 emu/cm3, R++ and R-- will be little 
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different, so the contamination posed by having 1/10th of the wrong spin state in the as-

measured reflectivity might be negligible.  In this situation, a relatively poorly polarized 

neutron beam might be preferred over a highly polarized neutron beam, especially if the 

intensity of the poorly polarized neutron beam is larger than that of the highly polarized 

beam.  

“Vector” magnetometry with polarized neutron beams 
In the previous discussions, the neutron spin and magnetic induction have been 

treated as if they were always parallel (or anti-parallel) to the neutron spin direction.  

However, this constraint does not always exist.  For example, a material with strong 

uniaxial anisotropy could be oriented with  at an angle of φ to M H (Figure 13).  

Classically, when a neutron whose spin enters a region in which its spin is not parallel to 

the induction, the neutron spin begins to precess.  Depending upon the time the neutron 

spends in this region and the strength of the induction, the neutron spin may flip 180°  

the intentional rotation of a neutron spin by 180° is the basis for operation of a so called 

Mezei spin-flipper [45].  Likewise, the magnetization of a material can rotate the spin of 

a neutron such that a beam with one polarization scatters from the sample with 

diminished polarization, i.e., some of the spin-up neutrons may be flipped to spin-

down—so-called spin-flip scattering.  In this situation, the scattering potential, ( )zVδ , is 

not simply birefringent: in other words the off-diagonal elements in Equation 25 are non-

zero.    
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Figure 13 Schematic diagram showing (top) a spin-up polarized neutron beam reflecting from a 
sample with magnetic induction at an angle of φ from the applied field.  The reflected beam has two 
components—the (R++) non-spin-flip and (R+-) reflectivities.  (lower) The case is shown when the 
polarization of the incident neutron beam is spin-down.  

 

For the geometry of the neutron reflectometry experiment shown in Figure 13, a 

further simplification to the off-diagonal elements of Equation 22 can be made.  One of 

Maxwell’s equations (specifically 0=⋅∇ B  [46]) requires the out-of-plane component of 

 across the interface to be continuous, so the component of  parallel to Q  or  will 

not yield a change in contrast across the interface; therefore, ρ

B B ŷ

+- = ρ-+ = ρmx ≡ ρSF.  The 
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important consequence of the dipolar interaction between neutron and magnetic moments 

is that magnetic scattering of the neutron is only produced by the component of the 

magnetization perpendicular to wavevector transfer.  In the case of a (specular) neutron 

reflection experiment (Figure 13), this requirement means that spin-dependence of the 

neutron reflectivity arises from the components of the sample magnetization projected 

onto the reflection (or sample) plane.   

Theoretical Example 5: Reflection from a magnetic medium in which 
the direction of magnetic induction is perpendicular to the applied 
field and parallel to the plane of the sample  

We now calculate the scattering from the Fe film for the case when the Fe 

magnetization is rotated through an angle φ about the surface normal from the applied 

field direction (see Figure 13).   In order to account for the possibility that the sample 

changes the spin state of a neutron, a generalization of Equation 28 to include spin-flip 

scattering, is required [19, 20, 28].  
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Equation 31 

where the elements of jA  are: 
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Equation 32 
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To calculate the four neutron spin reflectivities, R++, R+-, R-+ and R--, the nuclear 

(ρn) and magnetic (ρm, a vector) scattering length density profiles for the sample are 

computed.  Examples of these profiles are shown in Figure 14, where 

( ) ( )( )xzmC Fem ˆsinˆcos φφ +′=ρ .   

Next, we assume the sample is illuminated by a spin-up polarized neutron beam, 

so I+ = 1 and I- = 0, and use Equation 31 to compute R++ and R+- (≡ |r+|2 and |r-|2; the 

probabilities that a neutron with up-spin is reflected with up-spin or down-spin, 

respectively).   Then, the calculation is repeated for a spin-down polarized neutron beam 

(I+ = 0 and I- = 1) to obtain R-+ and R-- (≡ |r+|2 and |r-|2; the probabilities that a neutron 

with down-spin is reflected with up-spin or down-spin, respectively). The result is plotted 

in Figure 15, where 
2

+−−+ +
=

RRR SF , for the cases  (a) φ = 90° and (b) φ = 45°.  For the 

case φ = 90°, the net magnetization of the sample along the applied field is zero, so there 

is no splitting between the two non-spin-flip cross-sections (and a strong signal in the 

spin-flip cross-section).  On the other hand, for φ = 45°, the net magnetization of the 

sample along the applied field is non-zero, so splitting between R++ and R-- is observed 

along with a lower magnitude for RSF . 
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Figure 14  Plot of the nuclear (a) and magnetic (b) scattering length densities profiles.  Inset: The 
angle about the surface normal of the magnetization from the applied field is 90°. 
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Figure 15 Polarized neutron reflectivity curves for the Fe/Si sample (inset) with Fe magnetization 
rotated (a) φ = 90° and (b) φ = 45° from the applied field and polarization axis of the neutron beam. 

A qualitative (and intuitive) understanding of “vector” magnetometry 
An intuitive understanding of spin-dependent reflection is most easily obtained by 

considering the kinematical equations that describe reflection, which so far has been 

treated using the exact dynamical formalism.  By kinematical, we mean that effects such 

as the evanescence of the wave function below the critical edge, which greatly perturb the 

wave function inside the sample, are negligible.  These effects are neglected when the 
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transmitted wave function in Equation 1 is replaced with the incident wave function.  

Within the Born approximation, the spin-dependent reflection amplitudes for the 

scattering geometry shown in Figure 13 are [28]: 

( ) ( ) ( )[ ]

( ) ( ) dyeyyQr

dyeyyyQr

yiQ
mBA

yiQ
mnBA

⊥

⊥

∫

∫
∆

⊥
±

∆

⊥
±±

∝

±∝

0

0

sin)(

cos)(

φρ

φρρ

m

 

Equation 33 

The reflectivities for the non-spin-flip processes are a sum of the squares of the 

nuclear and magnetic structure factors (given in Equation 33) plus a term resulting from 

the interference between nuclear and magnetic scattering.  The interference term is 

observed with polarized neutron beams.  The spin-flip reflectivity is purely magnetic in 

origin.  Note for the special case where φ = 90°, as can be realized for samples with 

uniaxial anisotropy, the non-spin-flip reflectivities are purely nuclear (or chemical) in 

origin.  In this special case, the magnetic and chemical profiles of the sample can be 

isolated from one another. By measuring both the non-spin-flip and spin-flip reflectivities  

as a function of Q⊥, Equation 33 suggests that the variation of the magnetization vector, 

in amplitude and direction in the sample plane, can be obtained as a function of depth.  

This capability is an important reason why polarized neutron reflectometry complements 

conventional vector magnetometry, which is a technique that measures the net (or 

average) magnetization vector of a sample.   

A second important example of the power of polarized neutron reflectometry is 

for detecting and isolating magnetism of weakly magnetic materials from that of strongly 

magnetic materials through analysis of the Fourier components in the reflectivity curves. 
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Situations in which this capability may be valuable include detecting coerced or proximal 

magnetism in materials that are normally non-magnetic in the bulk, e.g., Pd that becomes 

magnetic in proximity to Fe [47].  Polarized neutron reflectometry is also valuable in 

studies of weakly ferromagnetic thin films, e.g., (Ga, Mn)As [48], grown on substrates 

that contribute a strong diamagnetic or paramagnetic background to the signal measured 

in a conventional magnetometer. 

For studies of films whose magnetization does not change with depth, but instead 

the magnetization changes along the film plane, as realized for example in films 

composed of magnetic domains, the sizes of the magnetic domains in relation to the 

coherence of the neutron beam (which is typically microns in size) determine whether 

off-specular or diffuse scattering of the neutron beam, in addition to specular scattering, 

is observed.  Diffuse scattering can be observed when the lateral variation of the 

magnetization is small in comparison to the coherence of the neutron beam.  On the other 

hand, if the domains are much bigger than the coherence of the beam, then information 

about the magnetism of the sample will be observed in the specular reflectivity. 

Consider reflection of a neutron beam from a single domain with uniform 

magnetization and having a lateral size that is large in comparison to the coherent region 

of the neutron beam.  In this example, the reflectivity of the domain is straightforwardly 

calculated using Equation 33. 
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Equation 34 
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Using the relation between ρm and m provided by Equation 23 we resolve m into 

components parallel and perpendicular to the applied field such that φρ cos|| mm ∝  and 

φρ sinmm ∝⊥ , respectively.  Then, using Equation 34 we obtain a physical meaning for 

the difference (or splitting) between the non-spin-flip reflectivities, ∆NSF, and RSF. 

( )
( )∆−∝

∆−∝−=∆

⊥⊥⊥

⊥⊥
−−

⊥
++

⊥

QmQR

QmQRQRQ
SF
BA

BABANSF

cos1)(

cos1)()()(
2

||  

Equation 35 

That is, the splitting between the non-spin-flip reflectivities is proportional to the 

projection of the domain magnetization onto the applied field, and the spin-flip 

reflectivity is proportional to the square of the domain magnetization perpendicular to the 

applied field.    

Owing to the fact that neutron scattering is a statistical probe of a sample’s 

potentially non-uniform distribution of magnetization, rather than a scanning probe of the 

magnetization at the atomic scale (which could be non-representative), there is an 

important complication to the interpretation of the neutron scattering results.  The 

complication stems from, as discussed earlier, whether the non-uniformity of 

magnetization varies on a length scale that is small or large compared to the coherent 

region [49] of the neutron beam.  If the fluctuations of magnetization are small compared 

to the coherent region of the neutron beam, then the reflectivity is obtained from the 

reflection amplitude of an ensemble of domains.  Depending upon the details of the 

fluctuations, the scattering may consist of specular and off-specular (or diffuse scattering) 

components.  On the other hand, if the fluctuations occur on a length scale larger than the 
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coherent region of the neutron beam, then the reflectivity is the sum of the reflectivity of 

each component and the reflectivity is specular.   

It is the second case, one composed of domains that are large in comparison to the 

coherent region of the neutron beam that is easiest to treat.  In this case, ||mNSF ∝∆  and 

2
⊥∝ mR SF

BA , where  denotes the average value of the ensemble.  The first term, ∆NSF, 

provides a measure of the Fourier components of the net sample magnetization projected 

onto the applied field and is similar to the net magnetization of the sample as measured 

by a magnetometer (in a sense a magnetometer measures ∆NSF corresponding to Q⊥ = 0).  

The second term contains qualitatively different information than that which can be 

measured by a vector magnetometer.  Specifically, RSF is a measure of the mean square 

deviation of the magnetization away from the applied field.  For the examples of 

magnetic domain distributions shown in Figure 16, the net sample magnetization in any 

direction is zero.  In this situation, a vector magnetometer would measure the zero-vector, 

yet, provided the domains are large in comparison to the coherence of the neutron beam, 

the mean square deviation of the magnetization away from the applied field is a (non-

zero) quantity obtained from polarized neutron scattering as RSF [50].  Note, f1, f⊥ = f2 + 

f4, and f3 [Figure 16(left)] and φ [Figure 16(right)] can be chosen such that 2
⊥m is the 

same for both models, so polarized neutron reflectometry cannot distinguish between 

these two particular domain distributions, nevertheless the technique does provide 

information about magnetic properties, e.g., anisotropy [51] that are related to 2
⊥m .   

Extreme cases of domain distributions—ones that yield no net magnetization 

along the applied field (as realized when the magnitude of the applied field is equal to the 
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coercive field) are shown in Figure 17, along with the features of the specular reflectivity 

curves that are unique to the particular domain structure.  In the first case, the non-spin-

flip reflectivities would be superimposed with amplitudes that contain nuclear and 

magnetic contributions [the reflectivity curve would not be the same as the purely nuclear 

case shown in Figure 5(b)]. The period of the non-spin-flip reflectivities would be 

2π/∆, and the spin-flip reflectivity would be zero.  In the second case, the non-spin-flip 

reflectivities would be purely nuclear in origin, and the spin-flip reflectivity would be 

non-zero with a period equal to the 2π/∆.  In the third case, the two non-spin-flip 

reflectivities would be different and have a period of 2π/(∆/2).  The spin-flip reflectivity 

would be zero for this case.  For the last case, the non-spin-flip reflectivities would be 

purely nuclear in origin (as in the second case) and the spin-flip reflectivity would be 

non-zero with a period of 2π/(∆/2).   

 

Figure 16  Examples of magnetic domains with magnetization directed as shown by the arrows.  (a) 
In this closure domain model fi represents the area fraction of the i-th domain, and the magnetization 
of the material reverses by changing the value of fi. (b) In this model, the area fractions of the 
domains are equal and the magnetization of the material reverses as the angle between the 
magnetization and the applied field direction changes from 0 to 180°. 
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Figure 17  Four examples of a magnetic material whose net magnetizations along the applied field, H,  
(or any direction) are all zero (the volume fractions of red and blue domains are equal, and the 
domain sizes are assumed to be large in comparison to the coherent region of the neutron beam).   
The neutron scattering signature in the specular reflectivities from each model is unique. 

Description of a polarized neutron reflectometer 
Three essential requirements for any polarized neutron reflectometer are:  
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(1) an a priori knowledge of the polarization of the neutron beam illuminating 

the sample;  

(2) the capability to measure the intensity and polarization of the neutron beam 

reflected by a sample;  

(3) and the ability to make these measurements as a function of wavevector 

transfer parallel and perpendicular to the sample surface.   

The first feature requires a device to polarize the neutron beam (a polarizer) and to flip 

the neutron beam polarization (a spin-flipper). The second feature requires a neutron 

detector and a device(s) to flip and measure the neutron beam polarization after reflection 

from the sample. Finally, wavevector transfer is obtained from measurements of the 

neutron wavelength and the angle through which the neutron has been scattered. Angles 

are measured using slits to define the path of the neutron beam that is allowed to strike a 

neutron detector, or by using a position sensitive neutron detector. 

Preparation of the cold neutron beam for a reflectometer at a 
pulsed neutron source 

We briefly describe a reflectometer/diffractometer (Figure 18) designed for 

studies of magnetic materials at a source of pulsed neutrons. Sources of pulsed neutrons 

(e.g. LANSCE at Los Alamos National Laboratory) provide neutron pulses that are 

typically very short, on the order of 100-300 µs, and periodic—with periods ranging 

between τ ~ 10 - 100 ms.  

For neutron scattering measurements in the small-Q or large d-spacing regimes 

(neutron scattering measurements of magnetic materials are often in these regimes), 

neutrons with very low energies (long wavelengths) are desirable because the sine of the 
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