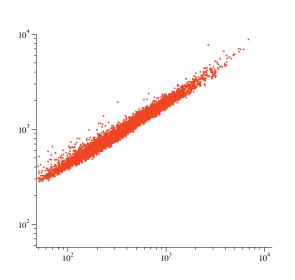
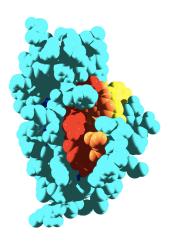
# Scaling Laws, the Golden Ratio, & the Small-Angle Scattering of Biomolecules





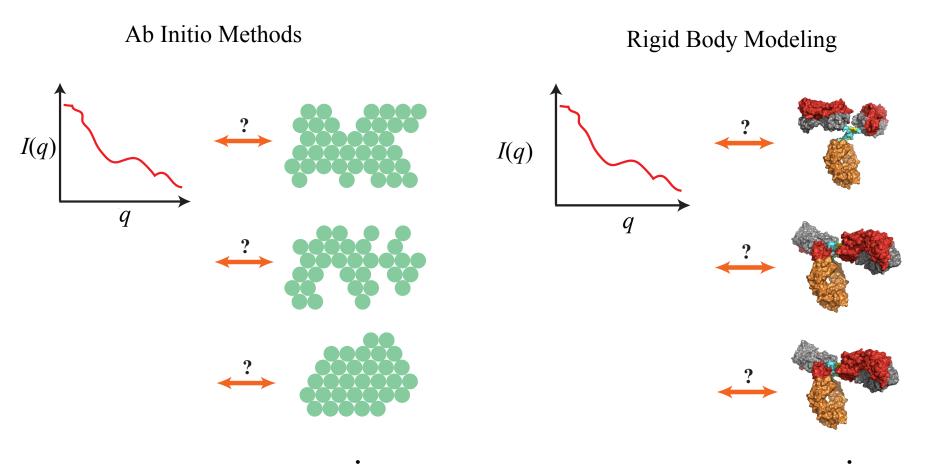


I) A fast method for calculating scattering intensities

II) Scaling Laws & Molecular Disorder



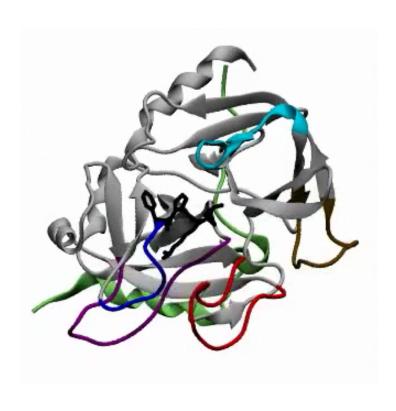
## **Shape Determination**



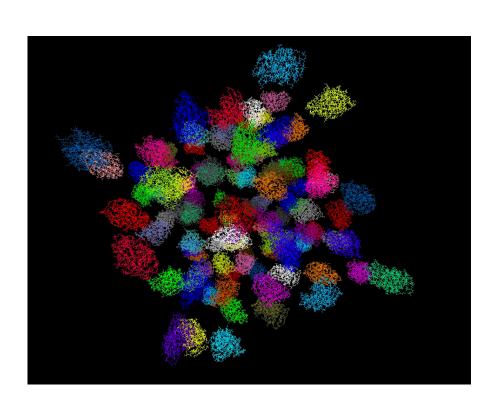
Chacon et al. 1998, Svergun 1999

Wall et al. 2000, Curtis et al. 2012

#### Connection to Simulations

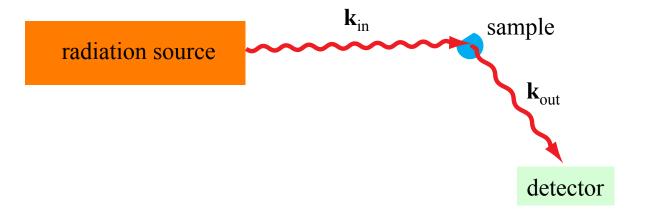


Single Protein Fuglestad et al. 2012



**Concentrated Protein Solutions** 

## Scattering Fundamentals



$$A\left(\mathbf{q}\right) = \sum_{j}^{N} b_{j} \mathrm{e}^{-i\mathbf{q}\cdot\mathbf{r}_{j}}$$
  $\mathbf{q} = \mathbf{k}_{\mathrm{out}} - \mathbf{k}_{\mathrm{in}}$  scattering vector position of atom.

position of atom *j* 

scattering length of atom j

N number of atoms

$$I\left(\mathbf{q}\right) = |A\left(\mathbf{q}\right)|^2$$

$$I(q) = \langle I(\mathbf{q}) \rangle_{\text{all directions}}$$

#### Easier Said Than Done

$$I(q) = \langle I(\mathbf{q}) \rangle_{\text{all directions}}$$

Exact Result: 
$$I(q) = \sum_{j=1}^{N} \sum_{k=1}^{N} b_j b_k \frac{\sin(q|\mathbf{r}_j - \mathbf{r}_k|)}{q|\mathbf{r}_j - \mathbf{r}_k|}$$
 (Debye 1915)

Summing over all pairs is an  $O(N^2)$  calculation

For one protein,  $N \sim 10^3 - 10^6$ 

Even worse for: multiple proteins

flexible domains

shape determination

## A Simple Alternative

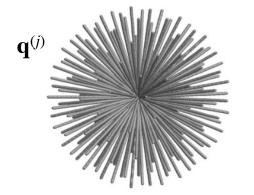
$$I(q) = \langle I(\mathbf{q}) \rangle_{\text{all directions}}$$

**q**: scattering vector

 $I(\mathbf{q})$ :  $\mathbf{q}$ -dependent scattering intensity

I(q): measured scattering intensity

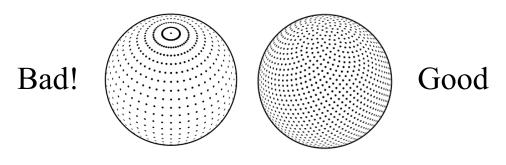
Numerically calculating  $I[\mathbf{q}]$  at a given  $\mathbf{q}$  scales as O[N] (N = number of atoms) To get I(q), just average over  $I[\mathbf{q}]$  for many  $\mathbf{q}$ 's:



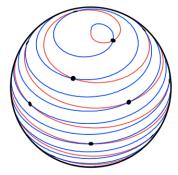
$$I(q) \approx \frac{1}{n} \left[ \sum_{j} I\left(\mathbf{q}^{(j)}\right) \right]$$

Calculating I(q) then scales as O[nN]

## Generating a Quasi-Spherical Lattice



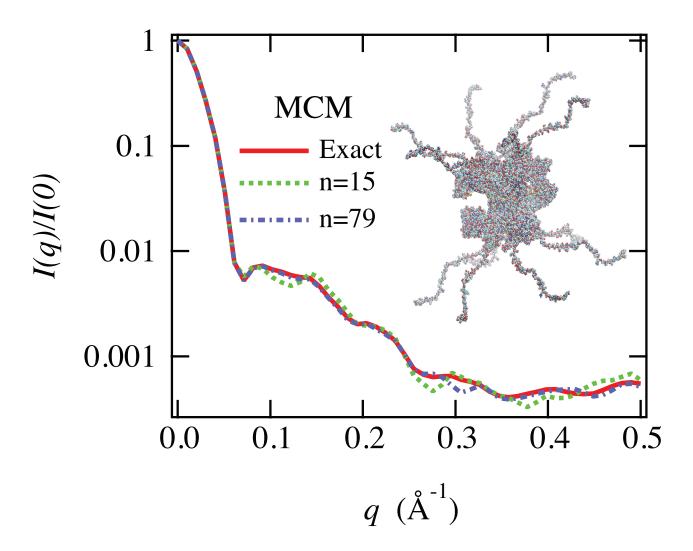
Fibonacci Lattice Built Using Golden Ratio:  $\Phi = 1.618...$ 



(González 2010)







(Krueger et al, 2011)

#### Golden Vector Method

Step 1: generate n scattering vectors  $\mathbf{q}^{(j)}$  on quasi-spherical lattice using golden ratio



Step 2: calculate  $I[\mathbf{q}^{(j)}]$  for each  $\mathbf{q}^{(j)}$ 

Step 3: average over all 
$$I[\mathbf{q}^{(j)}]$$
:  $I(q) \approx \frac{1}{n} \left( \sum_{\mathbf{q}^{(j)} \in \text{lattice}} I[\mathbf{q}^{(j)}] \right)$ 

- Speed scales as O[nN]
- For given level of accuracy, 2-8 times faster than Spherical Harmonic Method (CRYSON)
- Watson and Curtis, Journal of Applied Crystallography, 2013

## Summary

- Golden Vector Method: simple yet powerful
  - good for any collection of atoms
  - easy to customize



- analysis of polymer simulations (Mike Hore)
- incorporate solvent effects and web server
   (Hailang Zhang and Joseph Curtis)



I) A fast method for calculating scattering intensities

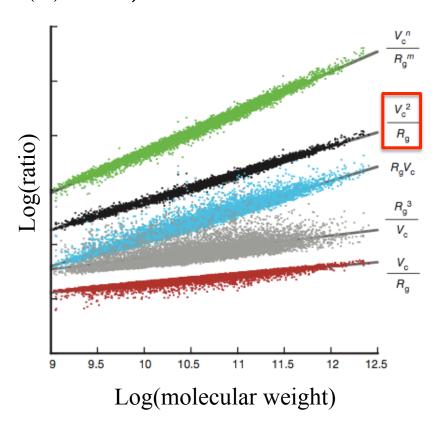


#### II) Scaling Laws & Molecular Disorder



#### A Curious Result for Compact Proteins:

$$V_c \equiv \left( \int_{\text{all } q} \frac{I(q)}{I(0)} q \, dq \right)^{-1}$$
  $R_g = \text{radius of gyration}$ 



Rambo & Tainer 2013

molecular weight  $\propto \frac{V_c^2}{R_g}$ 

## What is *Vc* really?

$$V_c(q_{\rm m}) \equiv \left(\int_0^{q_{\rm m}} \frac{I(q)}{I(0)} q \, \mathrm{d}q\right)^{-1}$$
  $q_{\rm m} = \text{adjustable parameter}$ 

Properties well known for  $q_{\mathrm{m}} \to \infty$  , but what about finite  $q_{\mathrm{m}}$  ?

#### It can be shown that:

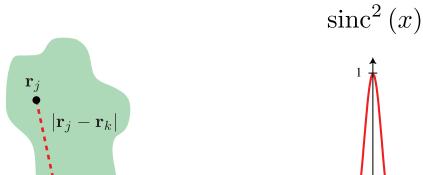
$$V_c(q_{\rm m}) = \frac{2I(0)}{q_{\rm m}^2 J(q_{\rm m})}$$

$$J(q_{\rm m}) = \sum_{j=1}^{N} \sum_{k=1}^{N} b_j b_k \operatorname{sinc}^2(q_{\rm m} | \mathbf{r}_j - \mathbf{r}_k | / 2) \qquad \text{and} \qquad \operatorname{sinc}(x) \equiv \frac{\sin(x)}{x}$$

 $\mathbf{r}_j$  position of atom j  $b_j$  scattering length of atom j N number of atoms

$$J(q_{\rm m}) = \sum_{j=1}^{N} \sum_{k=1}^{N} b_j b_k \operatorname{sinc}^2(q_{\rm m} |\mathbf{r}_j - \mathbf{r}_k|/2)$$

j, k each run over all atoms



 $q_{\rm m}$  describes an effective probe size



$$J(q_m) = k=1$$
  $+ \dots$ 

 $-4\pi$ 

 $2\pi$ 

Compact Molecules:

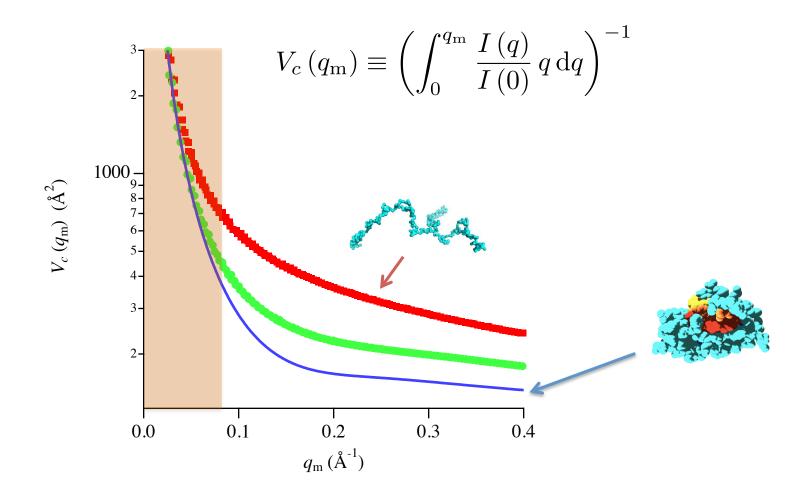
$$J\left(q_{m}
ight)= + ...$$

Disordered molecules:

$$V_c(q_{\rm m}) = \frac{2I(0)}{q_{\rm m}^2 J(q_{\rm m})}$$

 $V_{\rm c}$  ( $q_{\rm m}$ ) is \*larger\* for disordered molecules, for a given number of atoms

## Vc probes molecular disorder



information about disorder is even contained at very low  $q_{\rm m}$ 

## Scaling Laws for Vc

$$q_{\rm m}^{SAS} = (0.2 - 0.5) \,\text{Å}^{-1}$$

Upper limit for Small-Angle Scattering (SAS)

## Calculate $V_c\left(q_{\mathrm{m}}^{SAS}\right)$ :

Guinier Approximation:

$$\frac{I(q)}{I(0)} \approx \text{Exp}\left(-\frac{R_g^2 q^2}{3}\right) \qquad (qR_g \leq 1)$$

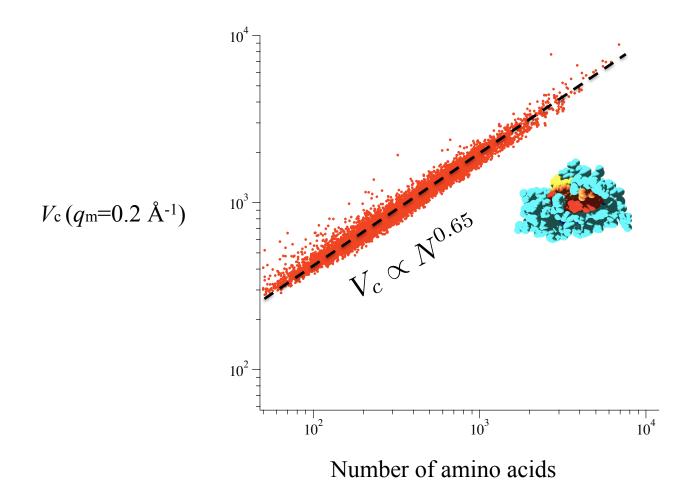
For compact proteins:

$$V_c\left(q_{
m m}^{SAS}
ight)pproxrac{2}{3}R_g^2$$
 
$$R_g\propto N^{1/3} \qquad {\it N}={
m number\ of\ atoms} \ .$$

$$R_a \propto N^{1/3}$$

$$V_c\left(q_{
m m}^{SAS}\right) \propto N^{2/3}$$

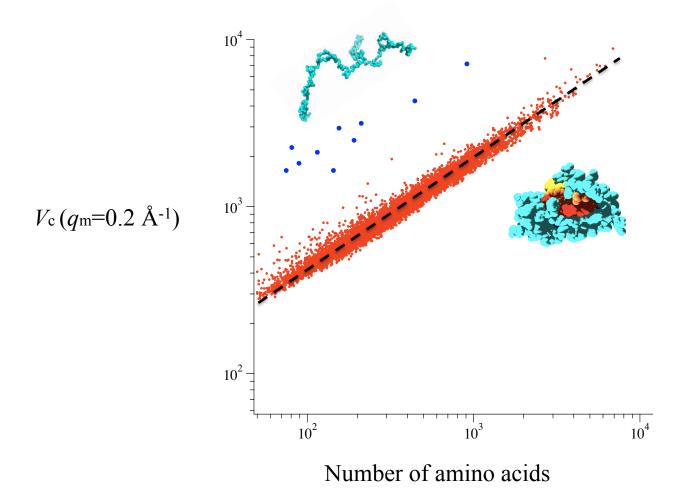
### Theory Agrees with Compact Protein Data



 $V_c \propto N^{2/3}$  explains Rambo and Tainer finding:

molecular weight  $\propto \frac{V_c^2}{R_q}$ 

#### Disordered Proteins Have a Larger Vc

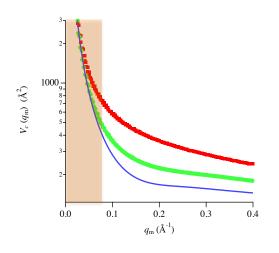


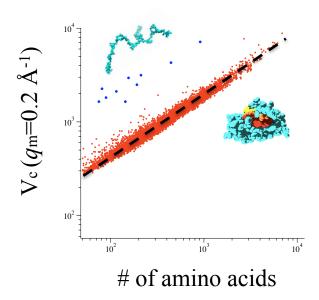
Position in plot can be used to quantify level of disorder

## Summary of Vc

$$V_c(q_{\rm m}) \equiv \left( \int_0^{q_{\rm m}} \frac{I(q)}{I(0)} q \, \mathrm{d}q \right)^{-1}$$

- Concentration independent, relative scale, easy to calculate
- Useful for comparing two molecules with roughly same # of atoms in a model-free way
- Contains good information even at low  $q_m$





- Can estimate molecular weight (compact)
- Can be applied to other molecules too (e.g. RNA, polymers...)

## Acknowledgements

• Joseph Curtis, Susan Krueger, Michi Nagao, Nick Clark

Dan Neumann and Rob Dimeo

National Research Council

