

What Can be Measured by SANS and Reflectometry?

Charles Glinka

Reflectometry from Submicron Structures NIST Summer School on SANS and

June 3-7, 2002

Incident neutron wave vector, $\left|\vec{k}_{i}\right| = \frac{2\pi}{\lambda_{i}}$

Center for Neutron Research

 2θ $d \approx \frac{2\pi}{0}$, for small scattering angles, $d \approx \frac{\lambda}{2\theta}$

In general, diffraction (SANS or NR) probes length scale

or
$$d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{\left(\frac{4\pi}{\lambda}\right)\sin\theta} = \frac{2\pi}{Q}$$

Recall Bragg's Law
$$\rightarrow \lambda = 2d \sin \theta$$

or $d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{\left(\frac{4\pi}{2}\right)_{\sin\theta}} = \frac{2\pi}{Q}$

Secall Bragg's Law
$$\rightarrow \lambda = \angle u$$
 SII
or $d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{(4\pi) \cdot \beta} = \frac{2\pi}{0}$

ecall Bragg's Law
$$\longrightarrow \lambda = 2d \sin \beta$$

$$k_{i} \xrightarrow{2\theta} Q = \frac{Q}{\lambda} \operatorname{sin} \theta$$

$$Q = \left(\frac{4\pi}{\lambda}\right) \operatorname{sir}$$

$$|\vec{Q}| = 2k\sin\theta$$

 $Q = \left(\frac{4\pi}{\lambda}\right)\sin\theta$

Kr.

For elastic scattering $(k_i = k_f = 2\pi/\lambda)$

 $\vec{Q} = \vec{k}_i - \vec{k}_f$

In general, diffraction (SANS or NR) probes length scale

 $d \approx \frac{2\pi}{Q}$, for small scattering angles, $d \approx \frac{\lambda}{2\theta}$

structure in the direction of Q, on a scale, $d \approx 2\pi/|{
m \ddot{Q}}|$ More specifically, diffraction (SANS or NR) probes

Reflectivity probes structure perpendicular to surface (parallel to Q), and *averages over structure in plane of sample*.

SANS probes structure in plane of sample (parallel to Q), and averages over structure perpendicular to sample surface.

Length Scales Probed by SANS and NR

NR probes structure on a scale d, where

 $d \approx \frac{2\pi}{Q} \approx \frac{\lambda}{2\theta}$ (wavelength) (reflection angle)

 $0.4 \text{ nm} < \lambda < 0.6 \text{ nm}$ $0.06^{\circ} < \theta < 20^{\circ} \text{ (small angles)}$ 0.5 nm < d < 500 nm

Length Scales Probed by SANS	s and NR
30-m SANS	Ľ Ľ
$d_{max} = d_{max} \approx \frac{\lambda}{\Delta \theta_{min}} \approx 300_1$ (limited by instrument resolution; in effect, source strength)	$\operatorname{m} \operatorname{d}_{\max} \approx \frac{\lambda}{\Delta \theta_{\min}} \approx 500 \operatorname{nm}$
$d_{min} d_{min} = \int_{p_{p}}^{1} (0) = \phi V_{p} (\Delta \rho)^{2} d_{s} d_{s}$ $d_{min} = \phi = volume fraction (limited by V_{p}^{p} + 'particle' volume signal-to-noise) \Delta \rho = scattering contrast \Delta \rho = scattering contrast \Delta \rho = scattering contrast \Delta \rho$	Γ_{s} $R_{min} \approx 10^{-8} \approx \frac{(8\pi\Delta\rho)^{2}}{Q_{max}^{4}}$ for NCNR instruments
u _s = sample thickness T _s = sample transmissior ش ع	for $\Delta \rho \approx 3 \times 10^{-6} \mathrm{A}^{-2}$ (good contrast)
for $V_p = \frac{\sigma}{6} d^3$ and 'good' contrasting particle diameter for NCNR 30 m SANS $-\phi d^3 \ge 5 \times 10^{-4} \text{ nm}^3$	d $d_{max} \sim 0.8 \text{A}^{-1}$ $d_{max} \sim 0.8 \text{nm}$
instruments d _{min} φ 1 nm 0.05 %	Qmax
C Center for Neuron Research	

Techniques for the Measurement of Microstructure

- Deuterium Labeling and H- and D-Solvent Mixtures Unique Control of Scattering Contrast by
- Uniquely Powerful Probe of Magnetic Structure

Also,

- highly penetrating even at long wavelengths
- equally sensitive to light and heavy elements
- nondestructive

SANS APPLICATIONS	POLYMERS:	 Conformation of Polymer Molecules in Solution <u>and</u> in the bulk Structure of Microphase-Separated Block Copolymers Factors Affecting Miscibility of Polymer Blends 	BIOLOGY:	 Organization of Biomolecular Complexes in Solution 	 Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein 	complexes, Membranes, etc.	 Mechanisms and Pathways for Protein Folding and DNA Supercoiling 	CHEMISTRY:	Structure and Interactions in Colloidal Suspensions, Microemulsions,	Surfactant Micelies, etc.	 Microporosity of Chemical Absorbents 	 Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	Center for Neutron Research	 SANS APPLICATIONS POLYMERS: Conformation of Polymer Molecules in Solution <u>and</u> in the bulk Structure of Microphase-Separated Block Copolymers Eactors Affecting Miscibility of Polymer Blends Factors Affecting Miscibility of Polymer Blends BIOLOGY: Organization of Biomolecular Complexes in Solution Mechanism of Molecular Self-Assembly in Solutions and on Surfaces Microporous Media
 POLVMERS: Conformation of Polymer Molecules in Solution <u>and</u> in the bulk Euroture of Microphase-Separated Block Copolymers Eactors Affecting Miscibility of Polymer Blends Factors Affecting Miscibility of Polymer Blends BIOLOGY: Organization of Biomolecular Complexes in Solution Organization of Biomolecular Complexes in Solution Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc. Wechanisms and Pathways for Protein Folding and DNA Supercoiling CHEMISTRY: Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. Microporous Media Microporous Media 	 Conformation of Polymer Molecules in Solution <u>and</u> in the bulk Structure of Microphase-Separated Block Copolymers Eactors Affecting Miscibility of Polymer Blends Factors Affecting Miscibility of Polymer Blends Organization of Biomolecular Complexes in Solution Organization of Biomolecular Complexes in Solution Organization of Biomolecular Complexes in Solution Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc. Conformation Changes for Protein Folding and DNA Supercoiling CHEMISTRY: Mechanisms and Pathways for Protein Folding and DNA Supercoiling CHEMISTRY: Mechanisms of Chemical Suspensions, Microemulsions, Surfactant Micelles, etc. Microporous Media Microporous Media Microporous Media 	 BIOLOGY: Organization of Biomolecular Complexes in Solution Organization of Biomolecular Complexes in Solution Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc. Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	 Organization of Biomolecular Complexes in Solution Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc. Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling CHEMISTRY: Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling CHEMISTRY: Mechanisms and Pathways for Protein Folding and DNA Supercoiling Microporosity for Protein Folding and DNA Supercoiling Microporosity of Chemical Suspensions, Microemulsions, Suffactant Microlelles, etc. Microporosity of Chemical Absorbents Microporous Media Mater Internetions for Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	 Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc. Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. Microporosity of Chemical Absorbents Microporous Media 	 complexes, Membranes, etc. Mechanisms and Pathways for Protein Folding and DNA Supercoiling Mechanisms and Pathways for Protein Folding and DNA Supercoiling Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. Microporosity of Chemical Absorbents Microporous Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	 Mechanisms and Pathways for Protein Folding and DNA Supercoiling CHEMISTRY: Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. Microporosity of Chemical Absorbents Microporosity of Chemical Absorbents Microporous Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	CHEMISTRY: • Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. • Microporosity of Chemical Absorbents • Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media	 Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc. Microporosity of Chemical Absorbents Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	A Microporosity of Chemical Absorbents Microporosity of Chemical Absorbents Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media	 Microporosity of Chemical Absorbents Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media 	Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces of Microporous Media	Center for Neutron Research		

In Situ SANS Study of Evolution of Porosity in Low-K Films	C. Kim, K. Shin nd R.D. Miller SUNY Stonybrook 1 Res. Center	deuterated poragen to introduce contrast in as-spun films ow evolution of poragen kfill poragen-free final material with deuterated wetting I to compare pore with poragen structure $100 \int_{10}^{10} \int_{125^{\circ}C} \int_{10}^{125^{\circ}C} \int_{10}^{125^{\circ}C} \int_{10}^{10} \int$	SINCHAL
	R.M. Briber and G.Y. Yang E. Huang, H. University of Maryland W. Volksen a IBM Almade	 I(q) cm¹ I(q) cm¹ 	Center for Neutron Research

METALS AND CERAMICS:

- Kinetics and Morphology of Precipitate Growth in Alloys and Glasses
- Defect Structures (e.g. microcracks, voids) Resulting from Creep, Fatigue or Radiation Damage
- Grain and Defect Structures in Nanocrystalline Metals and Ceramics

MAGNETISM:

- Magnetic Ordering and Phase Transitions in Ferromagnets, Spin Glasses, Magnetic Superconductors, etc.
- Flux-Line Lattices in Superconductors

Vortex Matter in Superconductor Nb

Polymers:

- polymer phase behavior in thin films
- e.g. order-disorder phase transitions of block copolymers

Polymers:

- Polymer Interdiffusion at Interfaces
- Factors Affecting Wetting and Dewetting
- Polymer conformation and concentration profiles at solid-liquid and liquid-air interfaces

Chemistry:

- Langmuir-Blodgett films
- Self-Assembled monolayers, bilayers, etc.
- Electrochemical reactions

NR Study of Surfactants at Electrode Surfaces

I. Burgess, et al. (U. Guelph), J. Majewski & G. Smith (LANL), S. Satija & R. Ivkov (NCNR)

SGS Center for Neutron Research

Length [Ă]

PIN V VII

Biology:

- Location of Peptides in Biomimetic Single Bilayer Membranes
- Protein Adsorption/Desorption on Self-Assembled Monolayers
- Vectorially-Oriented Protein Monolayers

Magnetism:

- Magnetic Structure and Interlayer Coupling in GMR Multilayer Thin Films
- Magnetic Coupling and Ordering across Non-Magnetic Layers
- Spin Structures Associated with Exchange-Biased Magnetic Thin Films

Therefore, diffraction probes structure in the direction of Q only!

O, divided by # incident per direction corresponding to Scattering cross section: # neutrons scattering in unit area

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{N} \sum_{i} b_{i} e^{i \vec{\mathrm{Q}} \cdot \vec{\mathrm{I}}_{i}}$

Appendix A. Scattering from N Nuclei

Only components

of r_i parallel to Q

contribute to

summation

 $\mathbf{Q} \cdot \vec{\mathbf{r}} = \mathbf{Q} \mathbf{r}_{//}$ $\mathbf{I}_{\mathbf{I}}^{\mathsf{T}} = \mathbf{I}_{\mathbf{I}}^{\mathsf{T}} + \mathbf{I}_{\mathbf{I}}^{\mathsf{T}}$