Quantum Rotations in Methyl Iodide

Robert M. Dimeo

Summer School on Methods and Applications of Neutron Spectroscopy

HFBS Measurement Team

Zema Chowdhuri, Craig Brown, Terry Udovic

June 9-13, 2003

NIST Center for Neutron Research Gaithersburg, MD 20899

What are quantum rotations?

- Molecules in molecular solids can undergo reorientational motion
- H_2 is a dumbell rotor and its quantum rotations are nearly "free" (i.e. no barrier hinders its motion)

$$E_{I} = BI(I + 1), I = 0,1,2,K$$

 $B = \frac{\eta^{2}}{2I}$

• Hindered rotors can perform torsional oscillations and even rotational tunneling through the barrier!

Why study quantum rotations?

- Rotational dynamics as studied with neutrons reflect the molecular environment, i.e. the *energy landscape*
- Neutron tunneling spectroscopy provides extremely detailed information on the shape and magnitude of the potential energy of the molecular groups.
- Rotational tunneling measurements can be used to quantify interatomic interactions.
- Good test of first-principles/DFT calculations

Bulk CH₃I A Canonical Rotational System

Properties

MP: -66.5°C MW: 141.94 g/mol Dipole moment: μ = 1.62 debye

Projection onto the a-c plane (Prager et.al., J.Chem.Phys. 86, 2563 (1987))

The Methyl Group: CH₃

• We want to study the dynamics about the main molecular axis

 $I[CH_3] = 5.3 \times 10^{-47} \text{ kg} \cdot \text{m}^2$ $B = \frac{\eta^2}{2I} = 0.65 \text{ meV}$

Free rotor energy levels: $E_j = Bj^2$, j = 0,1,2,K

Useful conversions $1 \text{ meV} \leftrightarrow 4 \text{ ps}$ $1 \mu eV \leftrightarrow 4 \text{ ns}$

Bulk CH_3I Dynamics

- Interaction potential of methyl group (1) van der Waals term, (2) short-range steric repulsion, and (3) additional multipole terms
- Simplified model based on symmetry alone: $V(\theta) = \frac{V_3}{2}(1 \cos 3\theta)$

Bulk CH₃T Dynamics

$$H = -B\frac{d^{2}}{d\theta^{2}} + \frac{V_{3}}{2}(1 - \cos 3\theta)$$

Tunneling energy very sensitive to the barrier height!

Rotational Tunneling

- Tunneling rate (...and energy) proportional to the overlap of the wavefunctions through the barrier
- Overlap increases with librational level (n_{LIB}) hence tunneling rate increases with librational level

Librational Motion

- Librations are torsional oscillations
- Harmonic approximation:

Measurement Technique Inelastic Neutron Scattering

- Neutrons are highly penetrating
- Wavelengths on order of intermolecular spacing (~Å)
- Energies on order of molecular excitations (~µeV-meV)
- No symmetry-based selection rules as in optical techniques
- Simple interpretation of spectra

Using Inelastic Neutron Scattering to See Quantum Rotations

- Neutrons can induce a spin flip in hydrogenous species
- Incoherent scattering
- Simple case: H₂

$$\begin{split} \Psi &= \psi_{rot} \psi_{ns} \ \psi_{el} \psi_{vib} \ (\psi_{el} \psi_{vib} \text{ are in the totally symmetric ground state}) \\ \Psi \text{ must be AS upon nuclear exchange (composed of 2 fermions)} \\ \psi_{ns} \text{ must be AS(S) if } \psi_{rot} \text{ is S(AS)} \end{split}$$

$$\psi_{ns}^{S} = \begin{cases} |\uparrow\uparrow\rangle \\ |\downarrow\downarrow\rangle \\ \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \end{cases} \qquad J = 1, \text{ ortho} \\ \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \qquad J = 0, \text{ para} \end{cases}$$

Using Inelastic Neutron Scattering to See Quantum Rotations

 For a methyl group rotation three spins involved so must construct the S and AS spin functions

- Observed transitions: A \rightarrow E and E \rightarrow E
- Situation is more complex but still need to flip a spin to induce a transition between rotational states

Using Inelastic Neutron Scattering to See Quantum Rotational Tunneling

Neutron scattering law for methyl tunneling

$$S(Q,\omega) = A_0(Q)\delta(\omega) + (1 - A_0(Q))\frac{1}{2}[\delta(\omega - \omega_t) + \delta(\omega + \omega_t)]$$
$$A_0(Q) = \frac{5 + 4j_0(QR\sqrt{3})}{9}$$

R: radius of methyl group

- ω_t : tunneling energy
- A₀: elastic incoherent structure factor

High Flux Backscattering Spectrometer NIST Center for Neutron Research

- High energy resolution is often necessary to observe rotational tunneling directly.
- Typical neutron techniques to study tunneling include TOF, backscattering, and neutron spinecho
- No other neutron spectrometer in North America is capable of measuring the tunnel splitting of CH₃I!

Are the HFBS measurements enough?

- Measuring the tunneling energy allows you to estimate the barrier height $\rm V_3$

Can we stop here and declare victory?....NO!

- With knowledge of the barrier height you can estimate the librational transition energy ${\rm E}_{\rm 0}$
- Confirmation that this model is correct requires that we perform an independent measurement like measuring the librational transition and comparing the measurement with our estimate

Filter Analyzer Neutron Spectrometer NIST Center for Neutron Research

- S(Q,E) reflects density of vibrational (librational) modes, G(E)
- Vary initial energy, fix final energy
- Measures energy transfers of order 10's-100's meV

Filter Analyzer Spectrometer

