Characterization of Latex Microspheres Using Ultra-Small-Angle Neutron Scattering

Summer School on Neutron Scattering and Reflectometry From Submicron Structures

> NIST Center for Neutron Research June 10-12, 2004

New Capabilities obtainable using USANS:

q range: $3x10^{-5} \text{ Å}^{-1} < q < 0.01 \text{ Å}^{-1}$ Particle Diameter: $0.1 \ \mu m < D < 10 \ \mu m$

Pores

in rocks, cement, paper, gels, thermal barrier coatings, etc **Dispersions**In alloys, ceramics, oil (soot), etc. **Emulsions** (oil/water)

Polystyrene Latex Microspheres

Dispersion in Alloy

Nondestructive Evaluation

SAS allows **nondestructive** *insitu* characterization of samples **Examples:**

- Sintering of pores within ceramics or metals
- Second phase nucleation and growth in polymer or metal alloys
- Coarsening of particles during annealing "Ostwald Ripening"

Characterization of Two-Phase Particulate Systems

Things we can learn from small angle scattering:

- Radius of gyration from Guinier fit.
- Volume fraction from integration of scattering.
- Mean particle volume from forward cross-section.
- Total particle surface area from Porod's law.
- Size distribution { if all particles are of the same shape }
- Particle shape { if all particles are of the same size }

From this experiment, you will learn how we can measure all the above characterization parameters

	Experiment Comparison	
Value	Silica (30m-SANS)	Latex (USANS)
Diameter	100 nm	500 nm
Volume Fraction	0.05%	1.0%
Size Dispersity	10 %	1.3%

Scattering from 1.0 vol % 500 nm diameter latex spheres in D₂O

Slit-Smeared

Scattering from 1.0 vol % 500 nm diameter latex spheres in D₂O

Guinier fit to data $R_G^2 = 3D^2/20$

Calculating Volume Fraction from Invariant

For all two phase systems having *uniform* scattering length densities in each phase, the volume fraction ϕ can be determined from the integration of all scattering

$$\phi(1-\phi) = \frac{Q_I}{2\pi^2 \Delta \rho^2}$$

$$=\Delta q_v \int_0^\infty q \, \frac{d\Sigma_s}{d\Omega}(q) dq$$

Calculating Mean Particle Volume from Forward Cross-Section

For all two phase systems having *uniform* scattering length densities in each phase, the forward cross-section $d\Sigma/d\Omega(0)$ is

$$\frac{d\Sigma}{d\Omega}(0) = \phi < V > \Delta \rho^2$$

where ϕ is the volume fraction, $\langle V \rangle$ is the mean particle volume. For a distribution of spherical particle sizes:

$$< V >= \frac{4}{3}\pi < R^3 >$$

We can use this relation to calculate either ϕ or $\langle R^3 \rangle$, and compare to values obtained from Guinier fit (R) and invariant (ϕ).

Calculating Particle Surface Area from Porod's Law

For all two phase systems having *uniform* scattering length densities in each phase, the asymptotic scattering at large q follows the relation

$$2\pi\Delta\rho^2 S_V = q^4 \frac{d\Sigma}{d\Omega}(q) = \Delta q_v q^3 \frac{d\Sigma_s}{d\Omega}(q)$$

Where S_V is the total particle surface area per unit sample volume. For monodisperse spheres, ^{8 10-6}

$$S_V = \frac{6\phi}{D}$$

Where D is the diameter.

Summary of Tasks

Data Acquisition:

- >> Measure ~ 1 vol % latex in D_2O Sample.
- >> Measure the empty beam background.

Data Reduction:

>> Run **IGOR Macro** to obtain slit-smeared data $I_S(q)$.

Data Analysis:

>> Fit $I_{S}(q)$ to Guinier law to obtain mean particle diameter.

- >> Determine volume fraction from invariant Q_I
- >> Determine volume fraction from $I_S(0)$
- >> Determine surface area from large-q Porod asymptote
- >> Determine mean **diameter**, **polydispersity** and **volume fraction** from fit of <u>entire curve</u>