Characterization of Latex Microspheres Using Ultra-Small-Angle Neutron Scattering

Summer School on Neutron Scattering and Reflectometry From Submicron Structures

NIST Center for Neutron Research
June 10-12, 2004

New Capabilities obtainable using USANS:
q range:
$3 \times 10^{-5} \AA^{-1}<\mathrm{q}<0.01 \AA^{-1}$
Particle Diameter:
$\mathbf{0 . 1} \mu \mathrm{m}<\mathrm{D}<\mathbf{1 0} \mu \mathrm{m}$

Pores

in rocks, cement, paper, gels, thermal barrier coatings, etc Dispersions
In alloys, ceramics, oil (soot), etc.
Emulsions (oil/water)

Polystyrene Latex Microspheres

Dispersion in Alloy

Nondestructive Evaluation

SAS allows nondestructive insitu characterization of samples Examples:

- Sintering of pores within ceramics or metals
- Second phase nucleation and growth in polymer or metal alloys
- Coarsening of particles during annealing "Ostwald Ripening"

Characterization of Two-Phase Particulate Systems

Things we can learn from small angle scattering:

- Radius of gyration from Guinier fit.
- Volume fraction from integration of scattering.
- Mean particle volume from forward cross-section.
- Total particle surface area from Porod's law.
- Size distribution \{ if all particles are of the same shape \}
- Particle shape $\{$ if all particles are of the same size $\}$

From this experiment, you will learn how we can measure all the above characterization parameters

Experiment Comparison

Value	Silica (30m-SANS)	Latex (USANS)
Diameter	100 nm	500 nm
Volume Fraction	0.05%	1.0%
Size Dispersity	10%	$\mathbf{1 . 3 \%}$

Scattering from 1.0 vol $\% 500 \mathrm{~nm}$ diameter latex spheres in $\mathrm{D}_{2} \mathrm{O}$

Slit-Smeared

Scattering from $1.0 \mathrm{vol} \% 500 \mathrm{~nm}$ diameter latex spheres in $\mathrm{D}_{2} \mathrm{O}$

Guinier fit to data

$$
\mathrm{R}_{\mathrm{G}}{ }^{2}=3 \mathrm{D}^{2} / 20
$$

Calculating Volume Fraction from Invariant

For all two phase systems having uniform scattering length densities in each phase, the volume fraction ϕ can be determined from the integration of all scattering

$$
\phi(1-\phi)=\frac{Q_{I}}{2 \pi^{2} \Delta \rho^{2}}
$$

The invariant is determined by

$$
\begin{aligned}
Q_{I} & \equiv \int_{0}^{\infty} q^{2} \frac{d \Sigma}{d \Omega}(q) d q \\
& =\Delta q_{v} \int_{0}^{\infty} q \frac{d \Sigma_{s}}{d \Omega}(q) d q
\end{aligned}
$$

Calculating Mean Particle Volume from Forward Cross-Section

For all two phase systems having uniform scattering length densities in each phase, the forward cross-section $\mathrm{d} \Sigma / \mathrm{d} \Omega(0)$ is

$$
\frac{d \Sigma}{d \Omega}(0)=\phi<V>\Delta \rho^{2}
$$

where ϕ is the volume fraction, $\langle\mathrm{V}\rangle$ is the mean particle volume. For a distribution of spherical particle sizes:

$$
\left.<V>=\frac{4}{3} \pi<R^{3}\right\rangle
$$

We can use this relation to calculate either ϕ or $\left\langle\mathrm{R}^{3}\right\rangle$, and compare to values obtained from Guinier fit (R) and invariant (ϕ).

Calculating Particle Surface Area from Porod's Law

For all two phase systems having uniform scattering length densities in each phase, the asymptotic scattering at large q follows the relation

$$
2 \pi \Delta \rho^{2} S_{V}=q^{4} \frac{d \Sigma}{d \Omega}(q)=\Delta q_{v} q^{3} \frac{d \Sigma_{s}}{d \Omega}(q)
$$

Where S_{V} is the total particle surface area per unit sample volume. For monodisperse spheres,

$$
S_{V}=\frac{6 \phi}{D}
$$

Where D is the diameter.

Summary of Tasks

Data Acquisition:

\gg Measure ~ 1 vol \% latex in $\mathrm{D}_{2} \mathrm{O}$ Sample.
\gg Measure the empty beam background.

Data Reduction:

\gg Run IGOR Macro to obtain slit-smeared data $\mathrm{I}_{\mathrm{S}}(\mathrm{q})$.

Data Analysis:

\gg Fit $_{\mathrm{S}}(\mathrm{q})$ to Guinier law to obtain mean particle diameter.
\gg Determine volume fraction from invariant Q_{I}
\gg Determine volume fraction from $\mathrm{I}_{\mathrm{S}}(0)$
\gg Determine surface area from large-q Porod asymptote
\gg Determine mean diameter, polydispersity and volume fraction from fit of entire curve

