Fundamentals of Small-Angle Neutron Scattering

SANS: A Tool for Relating Nanoscale Structure to Bulk Properties

> Charles Glinka NIST Center for Neutron Research Gaithersburg, Maryland

(http://www.ncnr.nist.gov)

Techniques for the Measurement of Microstructure

SANS or SAXS?

	SANS	SAXS
Source of scattering	Differences in scattering length density	Differences in electron density
Sources	Few and weak	Many and strong
Size scale	1 nm - 1000 nm	1 nm - 1000 nm

SANS or SAXS?

	SANS	SAXS
Special Features	• D labeling and H/D contrast variation	 msec resolution for time-resolved measurements
	 Magnetic scattering 	 Superior Q- resolution
	 Conducive to extreme envivonments 	 Anomalous scattering
	 nondestructive 	•Small sample size

SANS or SAXS?

	SANS	SAXS
Complications	 Incoherent scattering 	 Radiation damage to some samples
	 H/D isotope effects 	 Parasitic scattering
		• Fluorescence
		 Beam stability

Concepts Common to SANS and Neutron Reflectometry

For elastic scattering ($k_i = k_f = 2\pi/\lambda$)

$$\vec{k}_{f}$$

$$\vec{Q} = \vec{k}_{i} - \vec{k}_{f}$$

$$|\vec{Q}| = 2k \sin\theta$$

$$Q = \left(\frac{4\pi}{\lambda}\right) \sin\theta$$

Recall Bragg's Law $\longrightarrow \lambda = 2d \sin\theta$ or $d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{\left(\frac{4\pi}{\lambda}\right)\sin\theta} = \frac{2\pi}{Q}$

In general, diffraction (SANS or NR) probes length scale

$$d \approx \frac{2\pi}{Q}$$
, for small scattering angles, $d \approx \frac{\lambda}{2\theta}$

In general, diffraction (SANS or NR) probes length scale

$$d \approx \frac{2\pi}{Q}$$
, for small scattering angles, $d \approx \frac{\lambda}{2\theta}$

More specifically, diffraction (SANS or NR) probes structure in the direction of \vec{Q} , on a scale, $d \approx 2\pi/|\vec{Q}|$

Diffraction Probes Structure in the Direction of \vec{Q} $\vec{k}_i - \vec{k}_f = \vec{Q}$

SANS Geometry

Reflectivity probes structure perpendicular to surface (parallel to Q), and *averages over structure in plane of sample*. SANS probes structure in plane of sample (parallel to Q), and *averages over structure perpendicular to sample surface*.

SANS Instrument Schematic

Small-Angle Neutron Scattering (SANS) probes structure on a scale *d* , where

 $d \approx \frac{\lambda}{2\theta}$ (wavelength) (scattering angle) $0.5 \text{ nm} < \lambda < 2 \text{ nm}$ (cold neutrons)

 $0.1^\circ < \theta < 10^\circ$ (small angles)

1 nm < d < 300 nm

SANS Fundamentals

• For Length Scale Probed by SANS Can Use Continuum Approximation

• Therefore we *can* use material properties rather than atomic properties when doing <u>small-angle</u> scattering

SANS Fundamentals

- •Inhomogeneities in scattering length density, $\rho(r)$, give rise to small-angle scattering
- Angular dependence of scattering, I(q), is given by:

$$\mathbf{I}(\vec{\mathbf{q}}) = \frac{1}{V} \left| \int_{V} \rho(\vec{\mathbf{r}}) e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}} \right|^{2}$$
 Rayleigh-Gans eqn.
Entire volume of sample

SANS Fundamentals: Coherent vs. Incoherent Scattering

Consider scattering from N atoms of a single element, ${}^{A}_{Z}X$

scattering length

NIST Center for Neutron Research

scattering lengths, b's, depend on isotope *and* isotope spin

SANS Fundamentals: Coherent vs. Incoherent Scattering

Consider scattering from N atoms of a single element, $^{A}_{7}X$

 $\mathbf{b}_{A_2} = \mathbf{b}_{A_2}^{\mathbf{b}_{A_2}} \qquad \mathbf{I}_{\text{Coh}}(\vec{q}) = \frac{1}{V} \langle \mathbf{b} \rangle^2 \sum_{i=1}^{N} \langle e^{i\vec{q}\cdot(\vec{r}_i - \vec{r}_j)} \rangle \qquad \text{information}$

the atom positions $I(\vec{q}) = \frac{1}{V} \sum_{i=1}^{N} \langle b_i b_j \rangle \langle e^{i\vec{q} \cdot (\vec{r}_i - \vec{r}_j)} \rangle = I_{Coh}(\vec{q}) + I_{Incoh}(\vec{q})$

structural

 $\mathbf{I}_{\text{Incoh}}(\vec{q}) = \frac{1}{V} \left(\left\langle \mathbf{b}^2 \right\rangle - \left\langle \mathbf{b} \right\rangle^2 \right) \sum_{j,j}^{N} \left\langle e^{i\vec{q}\cdot\left(\vec{r}_j - \vec{r}_j\right)} \right\rangle$

 $\mathbf{I}(\vec{\mathbf{q}}) = \frac{1}{\mathbf{V}} \left\langle \left| \sum_{i}^{N} \mathbf{b}_{i} e^{i \vec{q} \cdot \vec{r}_{i}} \right|^{2} \right\rangle$

 $I(\vec{q}) = \frac{1}{V} \left\langle \sum_{i=i}^{N} b_i b_j e^{i\vec{q} \cdot (\vec{r}_i - \vec{r}_j)} \right\rangle$ Since b's are uncorrelated with

scattering lengths: depend on isotope and isotope spin

no structural information

General Results for a Two-Phase System

• Incompressible phases of scattering length density ρ_1 and ρ_2

$$V = V_1 + V_2$$

$$\rho(\mathbf{r}) = \begin{cases} \rho_1 \text{ in } V_1 \\ \rho_2 \text{ in } V_2 \end{cases}$$

From the Rayleigh-Gans equation:

$$\mathbf{I}(\vec{\mathbf{q}}) = \frac{1}{V} \left| \rho_1 \int_{V_1} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}}_1 + \rho_2 \left\{ \int_{V} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}} - \int_{V_1} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}}_1 \right\} \right|^2$$

$$\mathbf{I}(\vec{\mathbf{q}}) = \frac{1}{V} (\rho_1 - \rho_2)^2 \left| \int_{V_1} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}}_1 \right|^2$$

Contrast Factor (depends on materials and radiation properties)

Spatial arrangement of material

General Results for a Two Phase System

$$\frac{d\Sigma}{d\Omega}(\vec{\mathbf{q}}) = \frac{1}{V}(\rho_{1} - \rho_{2})^{2} \left| \int_{V_{1}} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}}_{1} \right|^{2}$$
Particles'(i.e. discrete inhomogeneities)
Non-particulate systems
$$I(\mathbf{q}) = \frac{N}{V}(\rho_{1} - \rho_{2})^{2} \langle |\mathbf{F}(\mathbf{q})|^{2} \rangle S(\mathbf{q}) \qquad I(\mathbf{q}) \propto (\rho_{1} - \rho_{2})^{2} \int_{V} \gamma(\vec{r}) e^{-i\vec{\mathbf{q}}\cdot\vec{r}} d\vec{r}$$
contrast single particle shape
$$\left| \int_{V_{p}} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{r}}} d\vec{\mathbf{r}} \right|^{2}$$
correlation function

Scattering Invariant

10 % black90 % whitein each square

• Scattered intensity for each would certainly be different

$$\tilde{\mathbf{Q}} = \int \frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega} (\vec{\mathbf{q}}) \mathrm{d}\vec{\mathbf{q}} = (2\pi)^3 \overline{\left(\rho(\vec{\mathbf{r}}) - \overline{\rho}\right)^2}$$

• For an incompressible, two-phase system:

$$\frac{\tilde{Q}}{4\pi} \equiv Q^* = 2\pi^2 \phi_b (1 - \phi_b) (\rho_w - \rho_b)^2$$

• <u>Domains can be in any arrangement</u> *Guinier and Fournet, pp. 75-81.

Porod Scattering

• At large q: $I(q) \propto q^{-4}$

$$\frac{\pi}{Q^*} \cdot \lim_{q \to \text{large}} (I(q) \cdot q^4) = \frac{S}{V}$$

S/V = specific surface area of sample

Porod Scattering

SANS and Thermodynamics

Thermal density fluctuations also produce small-angle scattering

$$I(0) = \frac{\rho^2}{V} kT \beta_T$$
 Isothermal compressibility

Composition fluctuations also produce smallangle scattering

$$I(0) = \frac{\Delta \rho^2}{V} kT / \frac{\partial^2 G_m}{\partial \phi^2} \qquad Curvature of Free Energy of Mixing$$

Ref: Introduction to Polymer Physics, M. Doi, 1996

Multi-Phase Materials

• "contrast" and "structure" terms can still be factored as for 2 - phase systems

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(\vec{\mathbf{q}}) \rightarrow \frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}(q,\rho_{\mathrm{i}},\!S_{\mathrm{ij}})$$

Multi-Phase Materials

• for 'p' different phases in a matrix '0'

$$\frac{d\Sigma}{d\Omega}(q) = \sum_{i=1}^{p} (\rho_i - \rho_0)^2 S_{ii}(q) + \sum_{i < j} (\rho_i - \rho_0) (\rho_j - \rho_0) S_{ij}(q)$$

 \bullet Scattering is now a sum of several terms with possibly many unknown $S_{ij}\space{-1.5}\space{-1.$

*Higgins and Benoit, pp. 121-122.

• The two distinct two - phase systems can be easily understood

Contrast Variation

- A set of scattering experiments can yield a set of equations of known contrasts and unknown 'partial structure functions'
- Sturhmann Analysis Determine structure from Rg = f (contrast)

- 20 MW Reactor (4 x 10¹⁴ n/cm²-s peak thermal flux)
- Large liquid H₂ cold source (25 K)
- 21 beam facilities (7 thermal, 14 cold)
- 6 irradiation facilities

SANS Instrumentation at the NCNR

SANS Instruments at the NCNR

John Barker at Perfect-Crystal USANS Instrument

Triple-bounce analyzer xtal

NIST/NSF 30-m SANS

SANS APPLICATIONS

POLYMERS:

- Conformation of Polymer Molecules in Solution and in the bulk
- Structure of Microphase-Separated Block Copolymers
- Factors Affecting Miscibility of Polymer Blends

BIOLOGY:

- Organization of Biomolecular Complexes in Solution
- Conformation Changes Affecting Function of Proteins, Enzymes, DNA/Protein complexes, Membranes, etc.
- Mechanisms and Pathways for Protein Folding and DNA Supercoiling

CHEMISTRY:

- Structure and Interactions in Colloidal Suspensions, Microemulsions, Surfactant Micelles, etc.
- Microporosity of Chemical Absorbents
- Mechanisms of Molecular Self-Assembly in Solutions and on Surfaces
 of Microporous Media

Using Deuterium Labeling to Reveal Polymer Chain Conformation

 $I(Q) \propto c (b_H - b_D)^2 P(Q)$ P(Q) < -- Single Chain"Form Factor"

$$P(\mathbf{Q}) = \frac{1}{z^2} \sum_{i=1}^{N} \sum_{j=1}^{Z} \left\langle e^{i\vec{q}\cdot\vec{r}_{i,j}} \right\rangle$$

High Concentration Labeling

- if labeled chains are randomly dispersed

$$I(Q) \propto x (1 - x) (b_{H} - b_{D})^{2} P(Q)$$

$$\stackrel{\frown}{\longrightarrow} \text{homopolymer} \qquad \qquad \text{blend} \stackrel{\frown}{\longrightarrow} I(Q) \propto (x b_{D} + (1 - x)b_{H})^{2} S_{T}(Q) + (1 - x)b_{H}^{2} S_{T}(Q) + (1 -$$

NIST Center for Neutron Research

$$x (1-x) (b_{\rm H} - b_{\rm D})^2 P(Q)$$

Can determine S_T and P(Q) from 2 measurements, with different fractions (x) of labeled chains

SANS APPLICATIONS

METALS AND CERAMICS:

- Kinetics and Morphology of Precipitate Growth in Alloys and Glasses
- Defect Structures (e.g. microcracks, voids) Resulting from Creep, Fatigue or Radiation Damage
- Grain and Defect Structures in Nanocrystalline Metals and Ceramics

MAGNETISM:

- Magnetic Ordering and Phase Transitions in Ferromagnets, Spin Glasses, Magnetic Superconductors, etc.
- Flux-Line Lattices in Superconductors

General References: SANS and SAXS

Methods of X-Ray and Neutron Scattering in Polymer Science By R.-J. Roe, Oxford University Press (2000).

X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, A. Guinier, Dover Books (1994).

Small-Angle Scattering of X-Rays, A. Guinier and G. Fournet, John Wiley & Sons (1955).

Polymers and Neutron Scattering, J.S. Higgins and H.C. Benoit, Clarendon Press-Oxford (1994).

Small Angle X-Ray Scattering, O. Glatter and O. Kratky, Academic Press (1982).

Appendix A. Scattering from Two Nuclei

Appendix A. Scattering from N Nuclei

Therefore, diffraction probes structure in the direction of Q *only*!!

