

The Disk Chopper Spectrometer (DCS)

(1) The neutron guide

(2) The choppers
(3) The sample area
(4) The flight chamber and the detectors

Buckminsterfullerene (C_{60})

- 60 equivalent C atoms on the vertices of a truncated icosahedron (i.e. soccer ball)
- 2 characteristic bond lengths:

- single bonds, $d_{1}=1.45 \AA$
- double bonds, $d_{2}=1.40 \AA$
- Molecular radius $\approx 3.55 \AA$

The Orientational Phase Transition of C_{60}

- $1^{\text {st }}$ order phase transition at $\mathrm{Tc}=260 \mathrm{~K}$
- T>Tc: C_{60} FCC symmetry, $\mathrm{a}_{0} \approx 14.15 \AA$, rotational motion
- $\mathrm{T}<\mathrm{Tc}: \mathrm{C}_{60} \mathrm{~S}$ SC symmetry, $\mathrm{a}_{0} \approx 14.09 \AA$, librational motion

Data Reduction

Comparison to Theoretical Model

C60 Quasielastic

Potential Barrier as a Function of Temperature

- V_{a} : potential barrier/ activation energy for C_{60} rotational jumps
- Defined by:

$$
\hbar \omega=\left(2 \pi / \theta_{\text {hop }}\right) \sqrt{B V_{A}}
$$

- $\theta_{\text {hop }}=$ angle between minima of orientational potential
- $B=\frac{\hbar^{2}}{2 I}=$ rotational constant
-Accepted value: $\mathrm{Va}=220-290 \mathrm{meV}$

Acknowledgements

Thanks to DCS instrument scientists: © \square m Brown, Yiming Qiu.

Thanks to everyone at NIST for planning and funding the summer school.

Thanks to Julie Keyser for travel and hotel arrangements

Thanks to group B members: David Hsieh, Susan Fullerton, Ashley Stowe, Patrick Clancy, Ted Lee, Andrei Savici, Christopher Shogbon, Jiying Li.

