METHYL IODIDE ROTATIONS: A Study Using HFBS and FANS

Group D
Derek Dee
Robert Fairchild
Feng Gao
Jamie Kropka
Giovanna Laudisio
Dazhi Liu
Cecile Malardier-Jugroot
Kirt Page

Backscattering: A High Resolution, Fixed

 Configuration Triple -Axis Spectrometer

High Flux Backscattering Spectrometer

Instrument Characteristics	
Final Energy	$2.08 \mathrm{meV}(6.27 \AA)$
Fixed Scattering Angles	$0.25 \AA^{-1}<\mathrm{Q}_{\mathrm{EL}}<1.75 \AA^{-1}$
Dynamic Range	$-50 \mu \mathrm{eV}<\Delta \mathrm{E}<50 \mu \mathrm{~V} \mathrm{~V}$
Resolution	$\delta \mathrm{e}<1 \mu \mathrm{eV}$
	$\delta \mathrm{Q} \approx 0.1 \AA^{-1}$

Methyl lodide Dynamics

Use 3-fold symmetric potential

$$
V(\theta)=\frac{V_{3}}{2}(1-\cos 3 \theta)
$$

Data analysis (DAVE)

Data Analysis

Data Analysis

- Average tunneling $2.42 \mu \mathrm{eV} \rightarrow \mathrm{V}_{3}=42 \mathrm{meV}$
- Using equation for separation betwee, librational levels

$$
\left(I=5.3 e^{-47} \mathrm{~kg} \mathrm{~m}^{2}\right)
$$

$$
E_{l i b}=\frac{3 h}{2 \pi} \sqrt[3]{\frac{V_{3}}{2 I}}
$$

$-\mathrm{E}_{\text {lib }}=15.6 \mathrm{meV}$

- confirm value from FANS.....

Filter Analyzer Neutron Spectrometer (FANS)

- Density of states
- Vary input energy, filter rejects all but 1.2 meV
- Measures 10 's- 100 's meV
- $\mathrm{E}_{\text {lib }}=\mathbf{1 3 . 2} \mathbf{~ m e V}$
- $\left(\mathrm{E}_{\text {lib }}=15.6 \mathrm{meV}\right.$ HFBS $)$

Data Analysis

- $\ln \mathrm{E}=\ln \mathrm{E}^{\circ}-1 / \mathrm{T}\left(\mathrm{E}_{\mathrm{a}} / \mathrm{R}\right)$
- $\mathrm{E}_{\mathrm{a}}=21.7 \mathrm{meV}$
(42 meV from low T data)

SUMMARY

- HFBS was used to study the rotational dynamics of CH_{3} I from $10-55 \mathrm{~K}$.
- Radius of the methyl group was estimated by fitting the EISF data.
- Tunneling energy determined - estimate V_{3} (potential barrier) and calculate $\mathrm{E}_{\text {libration }}$.
- Data from FANS was used to verify the prediction of the libration transition energy.
- E_{a} for $\mathrm{J} 0 \rightarrow 1$ transition was calculated

THANK YOU

To the NCNR Summer School Coordinators and Instructors for their assistance and guidance.

To the NIST and CHRNS for the opportunity to come and learn NS.

