Neutron Spin Echo Spectroscopy (NSE)

A. Faraone, D.P. Bossev, S.R. Kline, L. Kneller

> NCNR, NIST

Gaithersburg, MD 20899
E-mail:
afaraone@nist.gov
Internet:
http://www.ncnr.nist.gov/

Why we need a magnetic field?

Accessible regions in phase space

- Goal: $\delta E=10^{-5}-10^{-\mathbf{2}} \mathbf{m e V}$ (very small!!!)
- We need low energy neutrons. Cold neutrons: $\lambda=5-12 \AA, E=0.5-3.3 \mathrm{meV}$. - A "classical" inelastic technique works in two steps: preparation of the incoming monochromatic beam and analysis of the scattered beam.
- In Neutron spin echo the precessing neutron 50×10^{6} spin is employed as a kind of "individual" clock for each neutron. Thus, the velocity (energy) change of the neutrons can be measured directly in a single step.
- NSE technique allows the use of neutron beam wavelength spread $\Delta \lambda \lambda=5-20 \%$, and therefore reasonably intense.

Neutron Flux along NG5 guide to NSE

Neutrons in magnetic fields: Precession

Mass, $m_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
Spin, $S=1 / 2$ [in units of $h /(2 \pi)$]
Gyromagnetic ratio $\gamma=\mu_{\mathrm{n}} /[\mathrm{S} \times h /(2 \pi)]=$
$1.832 \times 10^{8} \mathrm{~s}^{-1 \mathrm{~T}^{-1}}\left(29.164 \mathrm{MHz} \mathrm{T}^{-1}\right)$

- The neutron will experience a torque from a magnetic field B perpendicular to its spin direction.
- Precession with the Larmor frequency:

$$
\omega_{L}=\gamma B
$$

- The precession rate is predetermined by the strength of the field only.

$$
\frac{d S}{d t}=\gamma S \times B=S \times \omega_{L}
$$

Spin echo effect

Monochromatic beam

- elastic scattering • inelastic scattering

$$
N(\lambda)=\frac{1}{2 \pi} \int \frac{4 \pi \gamma \mu_{N} B m \lambda}{h^{2}} d l=\frac{2 \gamma \mu_{N} m \lambda}{h^{2}} \int B d l=7370 \times J[T \cdot m] \times \lambda[\AA]
$$

$$
J=\int B d l \begin{aligned}
& J \text { field integral. At NCNR: } J_{\max }=0.5 \mathrm{~T} . \mathrm{m} \\
& N(\lambda=8 \AA) \sim 3 \times 10^{5}
\end{aligned}
$$

$$
\frac{\Delta v}{v} \approx \frac{1}{N} \approx 10^{-5}!
$$

Polychromatic beam

$N_{0} \equiv N\left(\lambda_{0}\right)$; then $N(\lambda)=N_{0} \frac{\lambda}{\lambda_{0}}$
The measured quantity is the spin component along z: $\cos (\Delta \varphi(\lambda))$:

Neglect 2nd order terms for small asymmetries or quasielastic scattering

The Principles of NSE

- If a spin rotates anticlockwise \& then clockwise by the same amount it comes back to the same orientation
- Need to reverse the direction of the applied field
- Independent of neutron speed provided the speed is constant
- The same effect can be obtained by reversing the precession angle at the mid-point and continuing the precession in the same sense - Use a π rotation
- If the neutron's velocity is changed by the sample, its spin will not come back to the same orientation
- The difference will be a measure of the change in the neutron's speed or energy.

NSE Spectrometer schematic

Spin flippers

$\pi / 2$ flipper

$S_{\text {ini }}$
π flipper

Intensity at the detector

For a single wavelength:
$\cos \left(2 \pi \Delta N_{0} \frac{\lambda}{\lambda_{0}}\right) \cos \left(2 \pi \mathrm{~N}_{0} \frac{\delta \lambda}{\lambda_{0}}\right)$

For wavelength distribution, $f(\lambda)$, with mean wavelength, λ_{0} :

$$
\langle P\rangle=\int_{0}^{\infty} f(\lambda) \cos \left(2 \pi \Delta N_{0} \frac{\lambda}{\lambda_{0}}\right)\left[\int_{-\infty}^{\infty} S(\mathbf{Q}, \omega) \cos (\omega t(\lambda)) d \omega\right] d \lambda
$$

$$
\text { where } t \equiv \frac{N_{0} m \lambda^{3}}{h \lambda_{0}} \text { since } \delta \lambda=\frac{m \lambda^{3}}{2 \pi h} \omega
$$

$\left[\int_{-\infty}^{\infty} S(\mathbf{Q}, \omega) \cos (\omega t(\lambda)) d \omega\right]$
Intermediate Scattering Function $I(Q, t)$

1nsec_8A_19990609.dat 1 cm apertures before solmain1 and after solmain2 solphase1 $=1.1296$ A

Measuring /(Q,t)

- The difference between the flipper ON and flipper OFF data gives $I(Q, 0)$
- The echo is fit to a gaussiandamped cosine.

How to deal with the resolution?

$$
\langle P\rangle=\int_{0}^{\infty} f(\lambda) \cos \left(2 \pi \Delta N_{0} \frac{\lambda}{\lambda_{0}}\right)\left[\int_{-\infty}^{\infty} S(\mathbf{Q}, \omega) \cos (\omega t(\lambda)) d \omega\right] d \lambda
$$

Inhomogeneities in the magnetic field may further reduce the polarization. Since they are not correlated with $S(Q, \omega)$ or $f(\lambda)$, their effect may be divided out by measuring the polarization from a purely elastic scatterer.

$$
\begin{aligned}
& {\left[\int_{-\infty}^{\infty} S(\mathbf{Q}, \omega) \cos (\omega t(\lambda)) d \omega\right]=I(\mathbf{Q}, t(\lambda))} \\
& \text { At the echo point, } \Delta N_{0}=0, \\
& \langle P\rangle=\int_{0}^{\infty} f(\lambda) I(\mathbf{Q}, t(\lambda)) d \lambda \\
& J(\mathbf{Q}, t)=I(\mathbf{Q}, t) \cdot R(\mathbf{Q}, t) \\
& I(\mathbf{Q}, t)=\frac{J(\mathbf{Q}, t)}{R(\mathbf{Q}, t)} \\
& \text { n the time domain the resolution }
\end{aligned}
$$ is simply divided

The main application of NSE is to measure the intermediate coherent scattering function $I_{\text {coh }}(Q, t)$, the coherent density fluctuations that correspond to some SANS intensity pattern.

- Diffusion
- Internal dynamics (shape fluctuations)
-...

Example: Diffusion of Surfactant Molecules

Hydrophobic tail Hydrophilic head

AOT micelles in n-decane $\left(\mathrm{C}_{10} \mathrm{D}_{22}\right)$
Inverse spherical micelle

$$
\frac{I(Q, t)}{I(Q, 0)}=\operatorname{Exp}\left[-D_{\text {eff }} Q^{2} t\right]
$$

Experiment

Shape fluctuations in $\mathrm{AOT} / \mathrm{D}_{2} \mathrm{O} / \mathrm{C}_{6} \mathrm{D}_{14}$ inverse microemulsion droplet

$$
\frac{I(Q, t)}{I(Q, 0)}=\operatorname{Exp}\left[-D_{e f f}(Q) Q^{2} t\right]
$$

$$
\begin{gathered}
D_{\text {eff }}(Q)=D_{t r}+D_{\text {def }}(Q)= \\
D_{t r}+\frac{\left.\left.5 \lambda_{2} f_{2}\left(Q R_{0}\right)\langle | a_{2}\right|^{2}\right\rangle}{\left.Q^{2}\left[4 \pi\left[j_{0}\left(Q R_{0}\right)\right]^{2}+\left.5 f_{2}\left(Q R_{0}\right)\langle | a_{2}\right|^{2}\right\rangle\right]} \\
f_{2}\left(Q R_{0}\right)=5\left[4 j_{2}\left(Q R_{0}\right)+Q R_{0} j_{3}\left(Q R_{0}\right)\right]
\end{gathered}
$$

Experiment

$$
D_{e f f}(Q)=D_{t r}+\frac{\left.\left.5 \lambda_{2} f_{2}\left(Q R_{0}\right)\langle | a_{2}\right|^{2}\right\rangle}{\left.Q^{2}\left[4 \pi\left[j_{0}\left(Q R_{0}\right)\right]^{2}+\left.5 f_{2}\left(Q R_{0}\right)\langle | a_{2}\right|^{2}\right\rangle\right]}
$$

Goal: Bending modulus of elasticity

$$
k=\frac{1}{48}\left[\frac{k_{B} T}{\pi p^{2}}+\lambda_{2} \eta R_{0}^{3} \frac{23 \eta^{\prime}+32 \eta}{3 \eta}\right]
$$

λ_{2} - the damping frequency - frequency of deformation
$\left.\left.\langle | a\right|^{2}\right\rangle$ - mean square displacement of the 2-nd harmonic - amplitude of deformation p^{2} - size polydispersity, measurable by SANS or DLS
η is the bulk viscosity of deuterated n-hexane
η^{\prime} is the bulk viscosity of deuterated water

